Amplification of electromagnetic radiation in a superlattice placed in a tilted magnetic field
https://doi.org/10.17586/2220-8054-2017-8-6-717-722
Аннотация
The interaction of electrons in a superlattice with electromagnetic radiation in presence of static electric and magnetic fields is investigated. The electric field is directed along the superlattice axis while the magnetic field is inclined at an arbitrary angle to the axis of superlattice. It is shown that the dependence of current in the superlattice on electric field in the general case can have several maxima. In some regions of electric and magnetic field values, the absorption coefficient for high frequency electromagnetic radiation can be negative that means the electromagnetic wave will be amplified. We note that negative absorption in the system is possible at some conditions at the region of positive differential conductivity in contrast to classical Bloch oscillator in which amplification takes place in case of negative differential conductivity only. This phenomenon can be used for the design of a teraherz amplifier and generator based on the superlattice.
Об авторах
M. A. PyataevРоссия
Bolshevistskaya, 68, Saransk, 430005
A. V. Shorokhov
Россия
Bolshevistskaya, 68, Saransk, 430005
N. N. Khvastunov
Россия
Studencheskaya, 11 A, Saransk, 430007
K. R. Vlasov
Россия
Bolshevistskaya, 68, Saransk, 430005
V. D. Krevchik
Россия
Krasnaya, 40, Penza, 440026
M. B. Semenov
Россия
Krasnaya, 40, Penza, 440026
K. N. Alekseev
Великобритания
Loughborough, Leicestershire LE11 3TU
F. V. Kusmartsev
Великобритания
Loughborough, Leicestershire LE11 3TU
Список литературы
1. Esaki L., Tsu R. Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev., 1970, 14, P. 61.
2. Hummel A.B., Bauer T., et al. Influence of a strong magnetic field on the Wannier-Stark states of an electrically biased GaAs/AlxGa1−xAs superlattice. Phys. Rev. B, 2003, 67, 045319-1-10.
3. Patane A., Mori N., et al. Magnetic-field-induced suppression of electronic conduction in a superlattice. Phys. Rev. Lett., 2004, 93, 146801-1-4.
4. Bass F.G., Tetervov A.P. High-frequency phenomena in semiconductor superlattices. Phys. Rep., 1986, 140 (5), P. 237–322.
5. Polyanovskii V.M. Nonlinear conductivity of a semiconductor with a superlattice in a strong magnetic field. Sov. Phys. Semicond., 1980, 14, P. 718–720.
6. Bass F.G., Lykakh V.A., Tetervov A.P. Cyclotron resonace in superlattice semiconductor. Sov. Phys. Semicond., 1980, 14, P. 1372–1376.
7. Bass F.G., Zorchenko V.V., Shashora V.I. To the theory of galvanomagnetic and high-frequency phenomena in semiconductors with a superlattice. Sov. Phys. Semicond., 1981, 15, P. 263–270.
8. Sibille A., Palmier J.F., et al. Semi-classical magnetotransport in a superlattice miniband. Europhys. Lett., 1990, 13 (3), P. 279–284.
9. Miller D., Laikhtman B. Classical theory of the perpendicular magnetoresistance in superlattice. Phys. Rev. B, 1995, 52, P. 12191–12201.
10. Elsholz F., Wacker A., et al. Magnetotransport through semiconductor superlattices. Phys. Rev. B, 2001, 63, 033312-1-4.
11. Feil T., Gerl C., Wegscheider W. Transport properties of a shunted surface superlattice in an external magnetic field. Phys. Rev. B, 2006, 73, 125301-1-7.
12. Kosevich Yu.A. Anomalous Hall velocity, transient weak supercurrent, and coherent Meissner effect in semiconductor superlattices. Phys. Rev. B, 2001, 63, 205313-1-19.
13. Bauer T., Kolb J., et al. Coherent Hall effect in a semiconductor superlattice. Phys. Rev. Lett., 2002, 88, 086801-1-4.
14. Hummel A.B., Blo¨ser C., et al. Electro-optic investigation of the coherent Hall effect in semiconductor superlattices. Phys. Stat. Sol. (b), 2005, 242 (6), P. 1175–1178.
15. Hyart T., Mattas J., Alekseev K.N. Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices. Phys. Rev. Lett., 2009, 103, 117401-1-4.
16. Shorokhov A.V., Pyataev M.A., et al. Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice. JETP Lett., 2014, 100 (12), P. 766–770.
17. Fromhold T.M., Krokhin A.A., et al. Effects of stochastic webs on chaotic electron transport in semiconductor superlattices. Phys. Rev. Lett., 2001, 87, 046803-1-4.
18. Balanov A.G., Fowler D., et al. Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field. Phys. Rev. E, 2008, 77, 026209-1-13.
19. Selskii A.O., Koronovskii A.A., et al. Studying transitions between different regimes of current oscillations generated in a semiconductor superlattice in the presence of a tilted magnetic field at various temperatures. Tech. Phys. Lett., 2015, 41 (8), P. 768–770.
20. Selskii A.O., Hramov A.E., et al. Bifurcation phenomena in a semiconductor superlattice subject to a tilted magnetic field. Phys. Lett. A, 2016, 380, P. 98–105.
21. Balanov A.G., Greenaway M.T., et al. The effect of temperature on the nonlinear dynamics of charge in a semiconductor superlattice in the presence of a magnetic field. J. Exp. Theor. Phys., 2012, 114 (5), P. 836–840.
22. Alexeeva N., Greenaway M.T., et al. Controlling high-frequency collective electron dynamics via single-particle complexity. Phys. Rev. Lett., 2012, 109, 024102-1-5.
23. Balanov A.G., Koronovskii A.A., et al. Space charge dynamics in a semiconductor superlattice affected by titled magnetic field and heating. Physics of Wave Phenomena, 2016, 24 (2), P. 103–107.
24. Budd J. Generalized path variable method. J. Phys. Soc. Japan, 1963, 18, P. 142.
Рецензия
Для цитирования:
Pyataev M.A., Shorokhov A.V., Khvastunov N.N., Vlasov K.R., Krevchik V.D., Semenov M.B., Alekseev K.N., Kusmartsev F.V. Amplification of electromagnetic radiation in a superlattice placed in a tilted magnetic field. Наносистемы: физика, химия, математика. 2017;8(6):717-722. https://doi.org/10.17586/2220-8054-2017-8-6-717-722
For citation:
Pyataev M.A., Shorokhov A.V., Khvastunov N.N., Vlasov K.R., Krevchik V.D., Semenov M.B., Alekseev K.N., Kusmartsev F.V. Amplification of electromagnetic radiation in a superlattice placed in a tilted magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):717-722. https://doi.org/10.17586/2220-8054-2017-8-6-717-722