Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Approaches to determining the kinetics for the formation of a nano-dispersed substance from the experimental distribution functions of its nanoparticle properties

https://doi.org/10.17586/2220-8054-2019-10-5-549-563

Abstract

In the present paper, we discuss the kinetic equations for the evolution of particles of a nanodispersed substance, distinguishing by properties (sizes, velocities, positions, etc.). The aim of the present investigation is to determine the coefficients for the equations by the distribution functions, which are obtained experimentally. The experiment is characterized by the time interval, which is needed for the measurement of the distribution function. However, the nanodispersed substance is obtained from a highly supersaturated solution or vapor and this time interval is large, thus, one is able to measure distribution functions only when the processes of the integration and the fragmentation of the particles become rather slow. So it is advisable to reconstruct the kinetics for the formation of a nanodispersed substance by the experimental distribution functions measured when the processes are rather slow. The first problem that arises is the obtaining of correct equations, and, hence, the derivation of the equations from each other. From the discrete system of equations for the evolution of discrete distribution functions of particles of a nanodispersed substance, we obtain the continuum equation of the Fokker-Planck type, or of the Einstein-Kolmogorov type, or of the diffuse approximation on the distribution function of nanoparticles distinguishing by the numbers of molecules forming them. We consider the distribution functions, which approximate the experimental data. We determine the coefficients for the equation of the Fokker-Planck type by the stationary and non-stationary distribution functions of a nanodispersed substance. Due to unity of the kinetic approach, the present work may be useful for specialists of various areas, who study the evolution of structures (not only with nanosize) with differing properties.

About the Authors

S. Z. Adzhiev
Lomonosov Moscow State University
Russian Federation

S.Z. Adzhiev

Moscow



I. V. Melikhov
Lomonosov Moscow State University
Russian Federation

I.V. Melikhov

Moscow



V. V. Vedenyapin
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences; RUDN-University
Russian Federation

V.V. Vedenyapin

Moscow



References

1. Maxwell J.C. On the Dynamical Theory of Gases. Philosophical Magazine, 1868, 4 ser, 35(235), P. 141–144.

2. Boltzmann L. Weitere Studien ¨uber das W¨armegleichgewicht unter Gasmolek¨ulen. Wien. Ber., 1872, 66, P. 275–370; Wissenschaftliche Abhandlungen, Barth, Leipzig, 1909, 1, P. 316–402.

3. Konyakhin S.V, Sharonova. L.V., Eidelman. E.D. Labeling detonation nanodiamond suspensions using the optical methods. Tech. Phys. Lett., 2013, 39(3), P. 244–247.

4. Aleksenskii A.E., Shvidchenko A.V., Eidel’man E.D. The applicability of dynamic light scattering to determination of nanoparticle dimensions in sols. Tech Phys Lett., 2012, 38(12), P. 1049–1052.

5. Melikhov I.V. Physico-chemical evolution of solids. Binom, Moscow, 2006 (in Russian).

6. Melikhov I.V. Evolutional approach to creation of nanostructures. Nanosystems: Physics, Chemistry, Mathematics, 2010, 1(1), P. 148–155 (in Russian).

7. Melikhov I.V., Mikheev N.B., Kulyukhin S.A., and Kozlovskaya E.D. Morphological Memory of Dispersed Solid Phases. Colloid Journal, 2001, 63(6), P. 738–745.

8. Melikhov I.V., Rudin V.N., Kozlovskaya E.D., Adzhiev S.Z., Alekseeva O.V. Morphological memory of polymers and their use in developing new materials technology. Theoretical Foundations of Chemical Engineering, 2016, 50(3), P. 260–269.

9. Eliseev A.A., Lukashin A.V. Functional nanomaterials. Under the editorship of Yu.D. Tretyakov. Fizmatlit, Moscow, 2010 (in Russian).

10. Bayes Thomas, Price Thomas. An Essay towards solving a Problem in the Doctrine of Chance, By the late Rev. Mr. Bayes communicated by Mr. Price, in a letter to John Canton, M.A. and F.R.S. Phylocophical Transactions of the Royal Society of London, 1963, 53, P. 370–418.

11. Adzhiev S.Z., Vedenyapin V.V., Volkov Yu.A., Melikhov I.V. Generalized Boltzmann-Type Equations for Aggregation in Gases. Computational Mathematics and Mathematical Physics, 2017, 57(12), P. 2017–2029.

12. Batishcheva J.G. On the motion of solid in gas reacting with its surface. Derivation of the dynamical system. Keldysh Institute preprints, 2003, 18, 21 p. (in Russian).

13. Maxwell J.C. Illustration of the Dynamical Theory of Gases. Philosophical Magazine, 1860, 1, P. 377–409.

14. Arrhenius S. U¨ ber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Sa¨uren. Z. physik. Chemie (Leipzig), 1889, 4, P. 226–248.

15. Stiller W. Arrhenius Equation and Non-Equilibrium Kinetics, 100 Years Arrhenius Equation. BSB B. S. Teubner Verlagsgesellschaft, Leipzig, 1989.

16. Kolmogorov A.N. On the analytic methods in probability theory. Russian Mathematical Surveys, 1938, 5, P. 5–41 (in Russian).

17. Smoluchowski M. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen. Z. Phys. Chem., 1917, 92, P. 129–168.

18. Becker R., D¨oring W. Kinetische Behandlung der Keimbildung in ubersattingten Dampfer. Ann. Phys., 1935, 24, P. 719–752.

19. Adzhiev S.Z., Melikhov I.V., Vedenyapin V.V. The H-theorem for the physico-chemical kinetic equations with explicit time discretization. Physica A: Statistical Mechanics and its Applications, 2017, 481, P. 60–69.

20. Adzhiev S., Melikhov I., Vedenyapin V. The H-theorem for the chemical kinetic equations with discrete time and for their generalizations. Journal of Physics: Conference Series, 2017, 788(1), P. 012001.

21. Adzhiev S.Z., Melikhov I.V., Vedenyapin V.V. The H-theorem for the physico-chemical kinetic equations with discrete time and for their generalizations. Physica A: Statistical Mechanics and its Applications, 2017, 480, P. 39–50.

22. Kousov P.A. The foundations of the analysis of disperse composition of industrial dusts and crushed materials. Chemistry, Leningrad, 1987 (in Russian).

23. Andreev S.E. On the formulas of mean diameter. Mining journal, 1951, 11, P. 32–36 (in Russian).

24. Rozin P., Rammlar E. Die Kornzusammensetzung des Mahlgutes im Lichte der Wahrscheinlichkeitslehre. Kolloid Zeitschrift, 1964, 67(1), P. 16–26.

25. Fannin P.C., Charles S.W. AC susceptibility measurements in the investigation of aggregation in magnetic fluids. Physica Polonica A, 2000, 97(3), P. 591–594.

26. Dahi S.R., Clelland R., Hrenya C.M. The effects of continuous size distributions on the rapid flow of inelastic particles. Physics of Fluids, 2002, 14(6), 1972.

27. Vargas-Ubera J., Aguilar J.F., Gale D.M. Reconstruction of particle-size distributions from light-scattering patterns using three inversion methods. Applied Optics, 2007, 46(1), P. 124–132.

28. Nosov V.V. Remote technique for simultaneous measurement of the particles’ velocity and size distribution function. Atmospheric and oceanic optics, 1996, 9(1), P. 56–59.

29. Bachina A., Ivanov V.A., Popkov V.I. Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 647–653.

30. Kolmogorov A.N. On the logarithmically normal distribution law of particle sizes under fragmentation. Dokl. Akad. Nauk SSSR, 1941, 31(2), P. 99–101 (in Russian).

31. Aitchison J., Brown J.A.C. The Lognormal Distribution. Cambridge Univ. Press, 1963.

32. Dacey M.F., Krumbein W.C. Models of breakage and selection for particle size distributions. Journal of the International Association for Mathematical Geology, 1979, 11(2), P. 193–222.

33. Cooper D.W. On the products of lognormal and cumulative lognormal particle size distributions. Journal of Aerosol Sciences, 1982, 13(2), P. 111–120.

34. Melik D.H., Fogler H.S. Turbidimetric determination of particle size distributions of colloidal systems. Journal of Colloid and Interface Science, 1983, 92(1), P. 161–180.

35. LeBlanc S.E., Fogler H.S. Dissolution of powdered minerals: the effect of polydispersity. AIChE Journal, 1989, 35(5), P. 865–868.

36. Buchan G.D., Grewal K.S., and Robson A.B. Improved models of particle-size distribution: an illustration of model comparison techniques. Soil Sci. Soc. Am. J., 1993, 57, P. 901–908.

37. Wagner L.E., Ding D. Representing aggregate size distributions as modified lognormal distributions. Transactions of the ASAE, 1994, 37(3), P. 815–821.

38. Chen Yongcheng, Zhang Yuanhui, Barber E.M. A new mathematical model of particle size distribution. Prairie Swine Centre Annual Research Report, 1994, P. 76–79.

39. Chaiken J., Goodisman J. Application of fractals and kinetic equation in modelling cluster and ultrafine particle size distributions. NanoStructured Materials, 1995, 5(2), P. 225–231.

40. Jonasz M., Fournier G. Approximation of the size distribution of marine particles by a sum of log-normal functions. Limnol. Oceanogr., 1996, 41(4), P. 744–754.

41. Kiss L.B., S¨oderlund J., Niklasson G.A., Granqvist C.G. New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology, 1999, 10(1), P. 25–28.

42. Selivanov V.N., Smyslov E.F. X-ray determination of the particle-size lognormal distribution in nanocrystalline materials. Industrial Laboratory, 2000, 66(11), P. 718–725.

43. Popa N.C., Balzar D. An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. Journal of Applied Crystallography, 2002, 35, P. 338–346.

44. Žd´ımal V., Brabec M., Wagner Zd. Comparison of two approaches to modeling atmospheric aerosol particle size distributions. Aerosol and Air Quality Research, 2008, 8(4), P. 392–410.

45. Rajesh T.A. Software Package for Aerosol Size Distribution. International Journal of Scientific Engineering and Technology, 2013, 2(4), P. 249–255.

46. Hossain M.A., Mori Sh. Determination of particle size distribution of used black tea leaves by scanning electron microscope. Dhaka Univ. J. Sci., 2013, 61(1), P. 111–115.

47. Desmond K.W. and Weeks E.R. Influence of particle size distribution on random close packing of spheres. Physical Review E, 2014, 90, P. 022204.

48. Gao M., Xia Q., Akwe A.W. et al. Self-preserving lognormal volume-size distributions of starch granules in developing sweetpotatoes and modulation of their scale parameters by a starch synthase II (SSII). Acta Physiologiae Plantarum, 2016, 38(11), Article: 259.

49. Qiao Yongsheng, Shen Yongsheng Lashes,Wu Meixia, Guo Yong, Meng Shuangming. A novel chemical synthesis of bowl-shaped polypyrrole particles. Materials Letters, 2014, 126, P. 185–188.

50. Azmeera Venkanna, Rastogi Pankaj Kumar, Adhikary Pubali, Ganesan Vellaichamy, Krishnamoorthi S. Synthesis, characterization and cyclic voltammetric study of copper(II) and nickel(II) polymer chelates. Carbohydrate Polymers, 2014, 110, P. 388–395.

51. Liu Junli, Ma Jianzhong, Bao Yan,Wang John, Zhu Zhenfeng, Tang Huiru, Zhang Limin. Nanoparticle morphology and film-forming behavior of polyacrylate/ZnO nanocomposite. Composites Science and Technology, 2014, 98, P. 64–71.

52. Diskaeva E.I., Vecher O.V., Bazikov I.A., Vakalov D.S. Particle size analysis of niosomes as a function of temperature. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(2), P. 290–294.

53. Polyanin A.D., Zaitsev V.F. Handbook on the differential equations with partial derivatives. Exact solutions. Intern. education program, Moscow, 1996 (in Russian).

54. Adzhiev S.Z., Vedenyapin V.V. Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model. Comput. Math. Math. Phys., 2011, 51(11), P. 1942–1952.

55. Vedenyapin V.V., Adzhiev, S.Z. Entropy in the sense of Boltzmann and Poincar´e, Russian Math. Surveys, 2014, 69(6), P. 995–1029.

56. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(3), P. 405–416.

57. Kuni F.M., Rusanov A.I. Statistical theory of aggregative equilibrium. Theoretical and Mathematical Physic, 1970, 2(2), P. 192–206.

58. Moliver S.S. Modeling chemisorption of carbon dimer at (8,0) nanotube. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 641– 646.

59. Durnev M.A., Eidelman E.D. Distribution of supercritical nucleation centers during the crystallization process in the presence of a flow as illustrated by the example of boron carbide-reinforced aluminum. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(3), P. 360–364.


Review

For citations:


Adzhiev S.Z., Melikhov I.V., Vedenyapin V.V. Approaches to determining the kinetics for the formation of a nano-dispersed substance from the experimental distribution functions of its nanoparticle properties. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(5):549-563. https://doi.org/10.17586/2220-8054-2019-10-5-549-563

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)