Finiteness of discrete spectrum of the two-particle Schrodinger operator on diamond lattices
https://doi.org/10.17586/2220-8054-2017-8-3-310-316
Abstract
We consider a two-particle Schrodinger operator H on the d−dimensional diamond lattice. We find a sufficiency condition of finiteness for discrete spectrum eigenvalues of H.
About the Author
M. I. MuminovMalaysia
Department of Mathematic of Sciences, Faculty of Science
81310 UTM Johor Bahru, Johor
References
1. Faddeev L.D., Merkuriev S.P. Quantum scattering theory for several particle systems. Kluwer Academic Publishers, 1993.
2. Mattis D.C. The few-body problem on lattice. Rew. mod. Phys., 1986, 58, P. 361—379.
3. Reed M.,Simon B. Methods of modern Mathematical Physics. V. 4. Analysis of Operators, Academic Press, London, 1980.
4. Minlos R.A., Mogilner A.I. Some problems concerning spectra of lattice models, in: Schrodinger Operators, Standard and Nonstandard ¨ (P. Exner and P. Seba, eds.), World Scientific, Teaneck N.J., 1989, P. 243–257.
5. Abdullaev J.I., Ikromov I.A. Finiteness of the number of eigenvalues of the two-particle Schredinger operator on a lattice. Theoretical and Mathematical Physics, 2007, 152(3), P. 1299–1312.
6. Remling, Christian. Discrete and embedded eigenvalues for one-dimensional Schrdinger operators. Comm. Math. Phys., 2007, 271, P. 275–287.
7. Muminov M.I., Khurramov A.M. Spectral properties of two-particle hamiltonian on a d-dimensional lattice. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(5), P. 880–887.
8. Kostrykin V., Schrader R. Kirchhoffs rule for quan tum wires. II: The inverse problem with possible applications to quantum c omputers. Fortschr. Phys., 2000, 48, P. 703–716.
9. Melnikov Yu.B., Pavlov B.S. Two-body scattering on a graph and application to simple nanoelectronic devices. J. Math. Phys., 1995, 36, P. 2813–2825.
10. Melikhov I.F., Popov I.Yu. The discrete spectrum of the multiparticle Hamiltonian in the framework of the Hartree-Fock approximation. Journal of Physics: Conference Series, 2014, 541, P. 012099.
11. Melikhov I.F., Popov I.Yu. Multi-Particle Bound States in Window-Coupled 2D Quantum Waveguides. Chinese Journal of Physics, 2015, 53(3), P. 1–12.
12. Kazunori Ando, Hiroshi Isozaki, Hisashi Morioka, Spectral Properties of Schrodinger Operators on Perturbed Lattices Ann. Henri Poincar ¨ e,´ 2016, 17(8), P. 2103–2171.
13. Isozaki H., Korotyaev E. Inverse Problems, Trace Formulae for Discrete Schrdinger Operators. Annales Henri Poincare, 2012, 13(4), P. 751–788
14. Ando K. Inverse scattering theory for discrete Schrodinger operators on the hexagonal lattice. ¨ Ann. Henri Poincare´, 2013, 14, P. 347–383.
15. Lakaev S.N.,Muminov M.I. Essential and Discrete Spectra of the Three-Particle Schrdinger Operator on a Lattice. Teoret. Mat. Fiz.,2003, 135(3),P. 478–503.
16. Kotani M., Shirai T. and Sunada T. Asymptotic Behavior of the Transition Probability of a Random Walk on an Infinite Graph. J. Func. Anal., 1998, 159, P. 664–689.
17. Sobolev A.V., The Efimov effect. Discrete spectrum asymptotics. Commun. Math. Phys., 1993, 156(1), P. 101–126.
18. Muminov M.E. The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrodinger ¨ operator on a lattice. Theor. Math. Phys., 2009, 159(2), P. 299–317.
19. Birman M.Sh., Solomyak M.Z. Spectral theory of selfadjoint operators in Hubert space. Dordrecht, D. Reidel P.O., 1987.
Review
For citations:
Muminov M.I. Finiteness of discrete spectrum of the two-particle Schrodinger operator on diamond lattices. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(3):310-316. https://doi.org/10.17586/2220-8054-2017-8-3-310-316