Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nanocluster structure deduced from AC-STEM images coupled to theoretical modelling

https://doi.org/10.17586/2220-8054-2017-8-6-723-731

Abstract

Determining the atomic structure of nanoclusters is a challenging task and a critical one for understanding their chemical and physical properties. Recently, the high resolution aberration corrected scanning transmission electron microscope (AC-STEM) technique has provided valuable information about such systems, but the analysis of the experimental images has typically been qualitative rather than quantitative. A method is presented for detailed analsis of AC-STEM images combined with theoretical modelling to extract atomic coordinates. An objective function formed by a linear combination of a fit to the two-dimensional AC-STEM image plus an estimate of the cluster’s energy for adding information about the third dimension is used in a global optimization algorithm to extract the atomic coordinates. The method is illustrated by analyzing model images generated for the Garzón structure of the Au55 cluster, which is a metastable structure for the embedded atom method (EAM) potential function used here to estimate the total energy. As the method does not rely on the alignment of atom rows in the AC-STEM image, the partially disordered chiral structure of the Au55 can successfully be determined even when a significant level of noise is added to the images.

About the Authors

K. Sukuta
Science Institute and Faculty of Physical Sciences, University of Iceland
Iceland

107 Reykjavík



M. Van den Bossche
Science Institute and Faculty of Physical Sciences, University of Iceland
Iceland

107 Reykjavík



A. Pedersen
Science Institute and Faculty of Physical Sciences, University of Iceland
Iceland

107 Reykjavík



H. Jónsson
Science Institute and Faculty of Physical Sciences, University of Iceland; Center for Nonlinear Studies
Iceland

107 Reykjavík, Iceland; Los Alamos, NM 87545, USA



References

1. Binning G., Rohrer H., Gerber Ch., Weibel E. Surface studies by scanning tunneling microscopy. Phys. Rev. Letters, 1982, 49(1), P. 57–61.

2. Valden M., Lai X., Goodman D.W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281, P. 1647.

3. Yamauchi M., Abe R., Tsukuda T., Kato K., Takata M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. J. Am. Chem. Soc., 2011, 133(5), P. 1150–1152.

4. Li H., Li L., Pedersen A., Gao Y., Khetrapal N., Jónsson H., Zeng X.C. Magic-number gold nanoclusters with diameter 1 to 3.5 nm: Relative stability and catalytic activity for CO oxidation. Nano Letters, 2015, 15, P. 682.

5. Brown L.M. A Synchrotron in a Microscope. Institute of Physics Conference Series, 1997, 153, P. 22.

6. Krivanek O.L., Dellby N., Lupini A.R. Towards sub-Å electron beams. Ultramicroscopy, 1999, 78(1-4), P. 1–11.

7. Li Z.Y. al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature, 2007, 451(7174), P. 46–48.

8. W Zhou W., Ross-Medgaarden E.I., Knowles W.V., Wong M. S., Wachs I.E., Kiely C.J., Nature Chemistry, 2009, 1, P. 722.

9. Van Aert S., Batenburg K.J., Rossell M.D., Erni R., Van Tendeloo G. Three-dimensional atomic imaging of crystalline nanoparticles. Nature, 2011, 470, P. 374.

10. Bals S., Van Aert S., Romero C.P., Lauwaet K., Van Bael M.J., Schoeters B., Partoens B., Yu¨celen E., Lievens P., Van Tendeloo G., Atomic scale dynamics of ultrasmall germanium clusters. Nature Communications, 2012, 3, P. 897.

11. Liu J., Single atom and cluster catalysis: The era of aberration-corrected scanning transmission electron microscopy. Microscopy and Microanalysis, 2013, 19 (Suppl. 2), P. 1678.

12. Corma A. et al., Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5, P. 775.

13. Garzón I.L., Posada-Amarillas A. Structural and vibrational analysis of amorphous Au55 clusters. Phys. Rev. B, 1996, 54, P. 11796–11802.

14. Garzón I.L. et al. Lowest Energy Structures of Gold Nanoclusters. Phys. Rev. Letters, 1998, 81, P. 1600–1603.

15. Michaelian K., Rendo´n N., Garzón I.L. Structure and energetics of Ni, Ag, and Au nanoclusters. Phys. Rev. B, 1999, 60(3), P. 2000–2010.

16. Wang Z.W., Palmer R.E. Experimental evidence for fluctuating, chiral-type Au55 clusters by direct atomic imaging. Nanoletters, 2012, 12, P. 5510–5514.

17. Yu M., Yankovich A.B., Kaczmarowski A., Morgan D., Voyles P.M. Integrated computational and experimental structure refinement for nanoparticles. ACS Nano, 2016, 10(4), P. 4031–4038.

18. Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 1986, 33(12), P. 7983–7991.

19. He D.S., Li Z.Y., Yuan J. Kinematic HAADF-STEM image simulation of small nanoparticles. Micron, 2015, 74(C), P. 47–53.

20. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1), P. 1–19.

21. Head J.D., Zerner M.C. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chem. Phys. Lett., 1985, 122(3), P. 264–270.

22. Vilhelmsen L.B., Hammer B. Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory. Phys. Rev. Lett., 2012, 108(12), P. 126101(4 pp.).

23. Bahn S.R., Jacobsen K.W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng., 2002, 4(3), P. 56–66.

24. Larsen A.H., et al. The atomic simulation environment a Python library for working with atoms. J. Phys.: Condens. Matter, 2017, 29(27), P. 273002.

25. Lyakhov A.O., Oganov A.R., Stokes H.T., Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput. Phys. Commun., 2013, 184(4), P. 1172–1182.

26. Vilhelmsen L.B., Walton K.S., and Sholl D.S., Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J. Am. Chem. Soc., 2012, 134(30), P. 12807–12816.

27. Daven D.M., Tit N., Morris J. R., Ho K.M. Structural optimization of Lennard-Jones clusters by a genetic algorithm. Chem. Phys. Lett., 1996, 256(12), P. 195–200.

28. Kuhn H.W. The Hungarian method for the assignment problem. Naval Research Logistics, 1955, 2(1-2), P. 83–97.

29. Munkres J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math., 1957, 5(1), P. 32–38.

30. Kilaas R. Optimal and near-optimal filters in high-resolution electron microscopy. J. Microsc., 1998, 190(1-2), P. 45–51.


Review

For citations:


Sukuta K., Van den Bossche M., Pedersen A., Jónsson H. Nanocluster structure deduced from AC-STEM images coupled to theoretical modelling. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):723-731. https://doi.org/10.17586/2220-8054-2017-8-6-723-731

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)