On a problem for the loaded degenerating mixed type equation involving integral-differential operators
https://doi.org/10.17586/2220-8054-2017-8-3-323-333
Abstract
This work aims to study the existence and uniqueness of a solution for a problem of the loaded degenerating mixed type equation. We consider the loaded parabolic-hyperbolic equation involving the Caputo fractional derivative and Riemann-Liouville integrals. The uniqueness of solution is proved by using the method of integral energy applying an extremum principle. Based on the statement of equivalence between “The existence and uniqueness of solution” and “Solvability of the respectively Fredholm type integral equations”, the existence of a solution was proved.
Keywords
About the Authors
B. I. IslomovUzbekistan
Universitetskaya-4, VUZgorodog, Tashkent, 100174
O. Kh. Abdullayev
Uzbekistan
Universitetskaya-4, VUZgorodog, Tashkent, 100174
N. K. Ochilova
Uzbekistan
st. Amir Timur. 57, Tashkent, 100000
References
1. Nakhushev A. M. The loaded equations and their applications. Nauka, M., 2012.
2. Abdullaev O. Kh. Non-local Problem for the Loaded Integral-differential Equation in Double-connected Domain. JPDE, 2016, 29(1), P. 1–12.
3. Abdullaev O. Kh. About a problem for loaded parabolic-hyperbolictype equations with fractional derivatives. Hindawi Publishing Corporation International Journal of Differential Equations, 2016, Article ID 9815796, 6 p., http://dx.doi.org/10.1155/2016/9815796.
4. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Amsterdam, 2006, (204), Elsevier Science.
5. Miller K. S., Ross B. An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
6. Podlubny I. Fractional Differential Equations, Academic Press, New York, 1999.
7. Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integral and Derivatives: Theory and Applications. Gordon and Breach, Longhorne, PA, 1993.
8. Magin R. Fractional calculus in bioengineering, Crit. Rev. Biom. Eng., 2004, 32(1), P. 1–104.
9. Ortigueira M. Special issue on fractional signal processing and applications, Signal Processing, 2003, 83(11), P. 2285–2480.
10. Oldham K. B. Fractional differential equations in electrochemistry. Advances in Engineering Software, 2008, P. 12012.
11. Metzler R, Joseph K. Boundary value problems for fractional diffusion equations, Physics A, 2000, 278, P. 107–125.
12. Rivero M. , Trujillo J. J, Velasco M. P., On Deterministic Fractional Models, Edited by D. Baleanu, Ziya B. Guvenc, J.A. Tenreiro Machado in the book New Trends in Nanotechnology and Fractional Calculus Applications, Springer Netherlands, 2010, P. 123–150.
13. Marichev O. I., Kilbas A. A., Repin O. A. Boundary value problems for partial differential equations with discounting coefficients. Izdat. Samar. Gos. Ekonom. Univ., Samara, 2008 (In Russian).
14. Repin O. A. Boundary value problems with shift for equations of hyperbolic and mixed type. Saratov Univ., Saratov, 1992 (In Russian).
15. Karimov E. T., Akhatov J. A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative. EJDE, 2014, 2014, P. 1–6. ,
16. Kilbas A. A., Repin O. A. An analog of the Bitsadze-Samarskii problem for a mixed type equation with a fractional derivative. Differential equations, 2003, 39(5), P. 674680.
17. Kilbas A. A. Repin O. A. An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative. Fractional Calculus and Applied Analysis, 2010, 13(1), P. 6984.
18. Pskhu A. V. Partial differential equation of fractional order. (Russian). Nauka, Moscow, 2000.
19. Smirnov M. M. Mixed type equations. M., Nauka, 2000.
20. Pskhu A. V. Solution of boundary value problems fractional diffusion equation by the Green function method. Differential equation, 2003, 39(10), P. 1509–1513.
Review
For citations:
Islomov B.I., Abdullayev O.Kh., Ochilova N.K. On a problem for the loaded degenerating mixed type equation involving integral-differential operators. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(3):323-333. https://doi.org/10.17586/2220-8054-2017-8-3-323-333