Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Vapor phase SERS sensor based on mesoporous silica decorated with silver nanoparticles

https://doi.org/10.17586/22208054201785579585

Abstract

For the first time, nanocomposite colloidosomes of mesoporous silica microspheres decorated with silver nanoparticles have been applied as a highly sensitive vapor phase optical sensors utilizing a semiquantitative analysis of surfaceenhanced Raman spectra (SERS). The material was prepared using soft chemistry approaches and benefits from the intrinsic properties of both components: the mesoporous structure of the silica microspheres allows for capillary condensation of target analytes while the silver nanoparticles favor the great enhancement of Raman fingerprints of thus trapped and preconcentrated analytes. This approach seems to be highly promising for the further development of express gas phase sensors for heterocyclic or polycyclic aromatic hydrocarbon pollutants.

About the Authors

A. S. Sarycheva
Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University
United States

Philadelphia, PA 19104



A. A. Semenova
Lomonosov Moscow State University, Faculty of Materials Science
Russian Federation

Lenin Hills, Moscow



E. A. Goodilin
Lomonosov Moscow State University, Faculty of Materials Science; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences Sciences
Russian Federation

Lenin Hills, Moscow, 119991



References

1. Yuan Y., Panwar N., et al. SERSbased ultrasensitive sensing platform: An insight into design and practical applications. Coord. Chem. Rev., 2017, 337, P. 1–33.

2. Sharma B., Frontiera R.R., et al. SERS: Materials, applications, and the future. Mater. Today, 2012, 15 (1–2), P. 16–25.

3. Semenova A.A., Semenov A.P., et al. Nanostructured silver materials for noninvasive medical diagnostics by surfaceenhanced Raman spectroscopy (focus article). Mendeleev Commun., 2016, 26 (3), P. 177–186.

4. Brazhe N.A., Evlyukhin A.B., et al. Probing cytochrome c in living mitochondria with surfaceenhanced Raman spectroscopy. Sci. Rep., 2015, 5, 13793.

5. Sarycheva A.S., Brazhe N.A., et al. New nanocomposites for SERS studies of living cells and mitochondria. J. Mater. Chem. B, 2016, 3 (4), P. 539–546.

6. Sarycheva A.S., Ivanov V.K., et al. Microbead silica decorated with polyhedral silver nanoparticles as a versatile component of sacrificial gel films for SERS applications. RSC advances, 2015, 5 (110), P. 90335–90342.

7. Semenova A.A., Ivanov V.K., Savilov S.V., Goodilin E.A. Unusual silver nanostructures prepared by aerosol spray pyrolysis. Cryst. Eng. Comm., 2013, 15 (39), P. 7863–7871.

8. Semenova A.A., Brazhe N.A., et al. A new route of SERS analysis of intact erythrocytes using polydisperse silver nanoplatelets on biocompatible scaffolds. RSC advances, 2016, 6 (88), P. 85156–85164.

9. Semenova A.A., Goodilin E.A., et al. Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips. J. Mater. Chem., 2012, 22 (47), P. 24530–24544.

10. Semenova A.A., Semenova I.A., et al. Revisiting preparation routes of SERS materials. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (5), P. 670–676.

11. Hill W., Wehling B., Klockow D. Analysis of odorous vapor exhaled from rubber by surfaceenhanced Raman scattering. Appl. Spectrosc., 1999, 53 (5), P. 547–550.

12. Kodiyath R., Malak S.T., et al. Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J. Mater. Chem. A, 2013, 1 (8), P. 2777–2788.

13. Biggs K.B., Camden J.P., Anker J.N., Van Duyne R.P. Surfaceenhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time. J. Phys. Chem. A, 2009, 113 (16), P. 4581–4586.

14. Zayak A.T., Hu Y.S., et al. Chemical Raman enhancement of organic adsorbates on metal surfaces. Phys. Rev. Lett., 2001, 106 (8), 083003(1–4).

15. Stokes D.L., Pal A., Narayanan V.A., VoDinh T. Evaluation of a chemical vapor dosimeter using polymercoated SERS substrates. Anal. Chim. Acta, 1999, 399 (3), P. 265–274.

16. Mueller M., Tebbe M., et al. Largearea organization of pNIPAMcoated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase. Langmuir, 2012, 28 (24), P. 9168–9173.

17. Lin E.C., Fang J., et al. Effective localized collection and identification of airborne species through electrodynamic precipitation and SERSbased detection. Nat. Commun., 2013, 4, 1636.

18. Piorek B.D., Lee S.J., et al. Freesurface microfluidic control of surfaceenhanced Raman spectroscopy for the optimized detection of airborne molecules. PNAS, 2007, 104 (48), P. 18898–18901.

19. Rae S.I., Khan I. Surface enhanced Raman spectroscopy (SERS) sensors for gas analysis. Analyst, 2010, 135 (6), P. 1365–1369.

20. Khaing Oo M.K., Chang C.F., Sun Y., Fan X. Rapid, sensitive DNT vapor detection with UVassisted photochemically synthesized gold nanoparticle SERS substrates. Analyst, 2011, 136 (13), P. 2811–2817.

21. Kreno L.E., Greeneltch N.G., et al. SERS of molecules that do not adsorb on Ag surfaces: a metalorganic frameworkbased functionalization strategy. Analyst, 2014, 139 (16), P. 4073–4080.

22. Chou A., Jaatinen E., et al. SERS substrate for detection of explosives. Nanoscale, 2012, 4 (23), P. 7419–7424.

23. Khaing Oo M.K., Guo Y., et al. Ultrasensitive vapor detection with surfaceenhanced Raman scatteringactive gold nanoparticle immobilized flowthrough multihole capillaries. Anal. Chem., 2012, 84 (7), P. 3376–3381.

24. Wang J., Yang L., et al. Spectroscopic ultratrace detection of nitroaromatic gas vapor on rationally designed twodimensional nanoparticle cluster arrays. Anal. Chem., 2011, 83 (6), P. 2243–2249.

25. Zhu S., Fan C., et al. Realization of high sensitive SERS substrates with onepot fabrication of AgFe 3O4 nanocomposites. J. Colloid Interface Sci., 2015, 438, P. 116–121.

26. Chong X., Kim K.J., et al. Plasmonic nanopatch array with integrated metalorganic framework for enhanced infrared absorption gas sensing. Nanotechnology, 2017, 28, 26LT01.

27. Zhang Z., Yu W., et al. Ultrasensitive surfaceenhanced Raman scattering sensor of gaseous aldehydes as biomarkers of lung cancer on dendritic ag nanocrystals. Anal. Chem., 2017, 89 (3), P. 1416–1420.

28. Chen Y., Zhang Y., et al. Breath analysis based on surfaceenhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano, 2016, 10 (9), P. 8169–8179.

29. Wong C.L., Dinish U.S., Schmidt M.S., Olivo M. Nonlabeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs). Anal. Chim. Acta, 2014, 844, P. 54–60.

30. Gerardin C., Reboul J., Bonne M., Lebeau B. Ecodesign of ordered mesoporous silica materials. Chem. Soc. Rev., 2013, 42 (9), P. 4217– 4255.

31. Innocenzi P., Malfatti L. Mesoporous thin films: properties and applications. Chem. Soc. Rev., 2013, 42 (9), P. 4198–4216.

32. Fleishmann M., Hendra P.J., McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, 26 (2), P. 163–166.

33. Morris V.R., Bhatia S.C., Stelson A.W., Hall J.H. Matrix isolation study of thermal decomposition of pyridine. Energy and Fuel, 1991, 5, P. 126–133.


Review

For citations:


Sarycheva A.S., Semenova A.A., Goodilin E.A. Vapor phase SERS sensor based on mesoporous silica decorated with silver nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):579–585. https://doi.org/10.17586/22208054201785579585

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)