Synchronization signal distortion in quantum communication systems
https://doi.org/10.17586/2220-8054-2017-8-3-382-385
Аннотация
An important problem in the practical implementation of fiber optical quantum communication systems is to synchronize the sender and receiver modules using a separate optical channel. The signal visibility in the quantum channel, which contributes to quantum bit error rate, is influenced by the synchronization signal delay. In this work, we investigate the dependence of the synchronization signal parameters on the dispersive effects in the fiber for a subcarrier wave quantum communication system (SCWQC), which is promising for quantum networking applications. The ITU-T G.652D standard single mode optical fiber was used for modeling. The maximum calculated phase mismatch of the synchronization signal for the system operating at 100 km fiber length corresponds to 1.7 ps signal time delay. The results show that dispersion causes significant signal distortion, therefore additional phase adjustment at least every 2.3 hours is required for stable system operation.
Список литературы
1. Scarani V., Bechmann-Pasquinucci H., Cerf N.J., et al. The security of practical quantum key distribution. Reviews of Modern Physics, 2009, 81, P. 1302–1351.
2. Bennett C., Brassard G. Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers. Systems and Signal Processing, 1984, P. 175–179.
3. Merolla J.M., Mazurenko Y., et al. Phase modulation transmission system for quantum cryptography. Optics letters, 1999, 24(2), P. 104– 106.
4. Korzh B., Wen Lim C.C., et al. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photonics, 2015, 9, P. 163–168.
5. Wang S., Chen W., et al. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Optics letters, 2012, 37(6), P. 1008–1010.
6. Kovalenko A.N. High-temperature superconductivity: From macro- to nanoscale structures. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 941–970.
7. Dubrovskaia V.D., Chivilikhin S.A. Temperature dependence of the optical fiber cable parameters in subcarrier wave quantum communication systems. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(2), P. 371–377.
8. Gleim A.V., Egorov V.I., et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics express, 2016, 24(3), P. 2619–2633.
9. Gleim A., Egorov V., et al. Polarization Insensitive 100 MHz Clock Subcarrier Quantum Key Distribution over a 45 dB Loss Optical Fiber Channel. CLEO: QELS Fundamental Science. Optical Society of America, 2015, paper FF1A.5.
10. Kutateladze S.S. Fundamentals of Heat Transfer, Moscow, Mashgiz Publishers, 1979, 417 p.
11. Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Clarendon Press, Oxford, 1959, 510 p.
12. Kato T., Koyano Y., Nishimura M. Temperature dependence of chromatic dispersion in various types of optical fiber, Opt. Lett., 2000, 25, P. 1156–1158.
13. Hamp M.J., et al. Investigation into the temperature dependence of chromatic dispersion in optical fiber. IEEE Photonics Technology Letters, 14(11), P. 1524–1526
Рецензия
Для цитирования:
, . Наносистемы: физика, химия, математика. 2017;8(3):382-385. https://doi.org/10.17586/2220-8054-2017-8-3-382-385
For citation:
Dubrovskaia V.D., Chivilikhin S.A. Synchronization signal distortion in quantum communication systems. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(3):382-385. https://doi.org/10.17586/2220-8054-2017-8-3-382-385