Biological effect of zirconium dioxide-based nanoparticles
https://doi.org/10.17586/2220-8054-2017-8-3-391-396
Abstract
This work demonstrates the positive effects of zirconium dioxide nanoparticles on cells in vitro. This is supported by the absence of toxicity, stimulation of metabolic and proliferative activity. The nanoparticles of solid solution of europium oxide in europium dioxide do not exhibit an explicit biological effect. The potentially successful application of zirconium dioxide-based nanoparticles in pharmacology has been demonstrated.
Keywords
About the Authors
O. V. AlmjashevaRussian Federation
ul. Professora Popova 5, 197376 St. Petersburg
A. V. Garabadzhiu
Russian Federation
Moskovsky prospect 26, 190013 St. Petersburg
Yu. V. Kozina
Russian Federation
Moskovsky prospect 26, 190013 St. Petersburg
L. F Litvinchuk
Russian Federation
Pudozhskaya ul. 7, 197110 St. Petersburg
V. P. Dobritsa
Russian Federation
Pudozhskaya ul. 7, 197110 St. Petersburg
References
1. Tretyakov Yu.D. Development of inorganic chemistry as a fundamental for the design of new generations of functional materials. Russ. Chem. Rev., 2004, 73 (9), P. 831–846.
2. Tretyakov Yu.D., Lukashin A.V., Eliseev A.A. Synthesis of functional nanocomposites based on solid-phase nanoreactors. Russ. Chem. Rev., 2004, 73 (9), P. 899–921.
3. Maskos M., Stauber R.H. Characterization of nanoparticles in biological environments. Comprehensive Biomaterials, 2011, 3, P. 329–339.
4. Lowa N., Seidel M., Radon P., Wiekhorst F. Magnetic nanoparticles in different biological environments analyzed by magnetic particle ¨ spectroscopy. Journal of Magnetism and Magnetic Materials, 2017, 427, P. 133–138.
5. Mirzaei H., Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 2017, 43 (1B), P. 907–914.
6. Hofmann-Amtenbrink M., Grainger D.W., Hofmann H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11 (7), P. 1689–1694.
7. Zarschler K., Rocks L., et al. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12 (6), P. 1663–1701.
8. Duchenea D., Gref R. Small is beautiful: Surprising nanoparticles. ˆ International Journal of Pharmaceutics, 2016, 502 (1–2), P. 219–231.
9. Zeinali Sehrig F., Majidi S., et al. Magnetic nanoparticles as potential candidates for biomedical and biological applications. Artif Cells Nanomed Biotechnol, 2016, 44 (3), P. 918–927.
10. Pombo Garcia K., Zarschler K., et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small, 2014, 10 (13), P. 2516–2529.
11. Blanco-Andujar C., Tung L.D., Thanh N.T.K. Synthesis of nanoparticles for biomedical applications. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 2010, 106, P. 553–556.
12. Gu L., Fang R.H., Sailor M.J., Park J.-H. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano, 2012, 6 (6), P. 4947–4954.
13. Balmuri S.R., Selvaraj U., et al. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment. Environmental Research, 2017, 152, P. 141–149.
14. Josko I., Oleszczuk P., Skwarek E. Toxicity of combined mixtures of nanoparticles to plants. ´ Journal of Hazardous Materials, 2017, 331, P. 200–209.
15. Friehs E., AlSalka Y., et.al. Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, P. 1–28.
16. Karunakaran G., Suriyaprabha R., et al. Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano- and micro-ZrO2 and -TiO2 particles. Ecot. Environ. Safe., 2013, 93, P. 191–197.
17. Venkatachalam J., Ganesan S., Aruna P. Synthesis and Characterization of Europium Doped Hafnium Oxide Nanoparticles by Precipitation Method. Int. J. Chem. Tech. Res., 2015, 8 (3), P. 1131–1138.
18. Jayaraman V., Bhavesh G., et al. Synthesis and characterization of hafnium oxide nanoparticles for bio-safety. Mater. Express, 2014, 4 (5), P. 375–383.
19. Jayakumar G., Irudayaraj A.A., Raj A.D., Anusuya M. Investigation on the preparation and properties of nanostructured cerium oxide. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (4), P. 728–731.
20. Shcherbakov A.B., Zholobak N.M., Spivak N.Ya., Ivanov V.K. Advances and prospects of using nanocrystalline ceria in cancer theranostics. Russian Journal of Inorganic Chemistry, 2014, 59 (13), P. 1556–1575.
21. Shcherbakov A.B., Zholobak N.M., Spivak N.Ya., Ivanov V.K. Advances and prospects of using nanocrystalline ceria in prolongation of lifespan and healthy aging. Russian Journal of Inorganic Chemistry, 2015, 60 (13), P. 1595–1625.
22. Zholobak N.M., Shcherbakov A.B., et al. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROSinduced and UV-induced damage. Russian Journal of Inorganic Chemistry, 2015, 60 (13), P. 1595–1625.
23. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by condition of hydrothermal synthesis. Russian Journal of General Chemistry, 1999, 69 (8), P. 1219–1222.
24. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2-H2O system. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (6), P. 1031–1049.
25. Vasilevskay A.K., Almjasheva O.V., Gusarov V.V. Peculiarities of structural transformations in zirconia nanocrystals. Journal of Nanoparticle Research, 2016, 18, P. 188.
26. Yan L., Yu R., Chen J., Xing X. Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: investigation of the morphology evolution. Crystal Growth & Design, 2008, 8 (5), P. 1474–1476.
27. Qi J., Zhou X. Formation of tetragonal and monoclinic-HfO2 nanoparticles in the oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, P. 26–34.
28. Almjasheva O.V., Denisova T.A. Water state in nanocrystals of zirconium dioxide prepared under hydrothermal conditions and its influence on structural transformations. Russian Journal of General Chemistry, 2017, 87 (1), P. 1–7. (doi: 10.1134/S1070363217010017)
29. Sharikov F.Yu., Almjasheva O.V., Gusarov V.V. Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal conditions. Russian Journal of Inorganic Chemistry, 2006, 51 (10), P. 1538–1542.
30. Gusarov V.V., Almyasheva O.V., et al. Investigation of an influence of cytotoxicity of zirconium oxide (ZrO2) and a solid solution (Zr0.98Eu0.02O1.98) on the basis there of, which has nanocrystal state on L-41 cell line. International workshop on nanobiotechnologies, 27–29 November 2006, Saint-Petersburg, 2006, P. 77.
31. Quan R., Tang Y., et al. Difference of adherence, proliferation and osteogenesis of mesenchymal stem cells cultured on different HA/ZrO2 composites. Chinese Journal of Traumatology, 2012, 15 (3), P. 131–139.
32. Abd El-Ghany O.S., Sherief A.H. Zirconia based ceramics, some clinical and biological aspects: Review. Future Dental Journal, 2016, 2 (2), P. 55–64.
33. Fakhri A., Behrouz S., et al. Synthesis and characterization of ZrO2 and carbon-doped ZrO2 nanoparticles for photocatalytic application. Journal of Molecular Liquids, 2016, 216, P. 342–346.
34. Ao H., Liu X., et al. Preparation of scandia stabilized zirconia powder using microwave-hydrothermal method. Journal of Rare Earths, 2015, 33 (7), P. 746–751.
35. Yudin V.E., Otaigbe J.U., et al. Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polimide nanocomposites. Express Polymer Letters, 2008, 2 (7), P. 485–493.
36. Almjasheva O.V., Postnov A.Yu., Maltseva N.V., Vlasov E.A. Thermostable catalysts for oxidation of hydrogen based on ZrO2–Al2O3 nanocomposite. Nanosystems: Physics, Chemistry, Mathematics, 2012, 3 (6), P. 75–82.
37. Khoshsima S., Yilmaz B., Tezcaner A., Evis Z. Structural, mechanical and biological properties of hydroxyapatite-zirconia-lanthanum oxide composites. Ceramics International, 2016, 42 (14), P. 15773–15779.
38. Bugrov A.N., Rodionov I.A., et al. Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO2 nanoparticles obtained by hydrothermal method. Int. J. Nanotechnology, 2016, 13 (1–3), P. 147–157.
39. Smirnov A.V., Fedorov B.A., et al. Core-shell nanoparticles forming in the ZrO2–Gd2O3–H2O system under hydrothermal conditions. Doklady Physical Chemistry, 2014, 456 (1), P. 71–73.
Review
For citations:
Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(3):391-396. https://doi.org/10.17586/2220-8054-2017-8-3-391-396