Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Cryometry data and excess thermodynamic functions in the binary system: water soluble bis-adduct of light fullerene C70 with lysine. Assymmetrical thermodynamic model of virtual gibbs energy decomposition – VD-AS

https://doi.org/10.17586/2220-8054-2017-8-3-397-405

Abstract

The temperature of water-ice crystallization initiation decreases (∆T) were determined in the binary water solutions of water soluble derivative of light fullerene C70 with amino-acid lysine at 272.99 – 273.15 K. Partial molar excess functions for H2O were calculated. For the thermodynamic description of our systems, we have elaborated an original semi-empirical model VD-AS (Virial Decomposition Asymmetric Model), based on the virial decomposition of the molar Gibbs energy of the component molar fractions in the solution. With the help of the VD-AS model, partial molar functions of nano-clusters were calculated. Excess and full average Gibbs energies for the solutions and miscibility gaps concentration regions (with the help of diffusional instability equations) were calculated. Thus, the VD-AS model excellently describes pre-delamination or micro-heterogeneous-structure formation in the considered solutions. These calculations were accordingly confirmed by dynamic light scattering data.

About the Authors

N. A. Charykov
Saint Petersburg State Technological Institute (Technical University); Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013; ul. Professora Popova 5, 197376 Saint Petersburg



K. N. Semenov
Saint Petersburg State University
Russian Federation

7/9 Universitetskaya emb., Saint Petersburg, 199034



V. V. Keskinov
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



P. V. Garamova
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



D. P. Tyurin
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



I. V. Semenyuk
Saint Petersburg State Technological Institute (Technical University),
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



V. V. Petrenko
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



A. V. Kurilenko
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



M. Yu. Matuzenko
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



N. A. Kulenova
D. Serikbayev East Kazakhstan state technical university
Kazakhstan

A. K. Protozanov Street, 69, Ust-Kamenogorsk city, 070004



A. A. Zolotarev
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovsky prospect, 26 Saint Petersburg, 190013



D. G. Letenko
Saint Petersburg State University of Architecture and Civil Engineering (SPSUACE)
Russian Federation

2-nd Krasnoarmeiskaya St. 4, 190005 Saint Petersburg



References

1. Li J., Takeuchi A., Ozawa M. et al. C60 fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc.Chem. Commun., 1993, 23, P. 1784.

2. Chiang L.Y., Bhonsle J.B., Wang L. et al. Efficient one-flask synthesis of water-soluble fullerenes. Tetrahedron, 1996, 52, P. 4963.

3. Chiang L.Y., Upasani R.B., Swirczewski J.W. Versatile nitronium chemistry for C60 fullerene functionalization. J. Am.Chem. Soc., 1992, 114, P. 10154.

4. Meier M.S., Kiegiel J. Preparation and characterization of the fullerene diols 1,2-C60(OH)2, 1,2-C70(OH)2, and 5,6-C70(OH)2. Org. Lett., 2001, 3, P. 1717.

5. Szymanska L., Radecka H., Radecki J. et al. Electrochemical impedance spectroscopy for study of amyloid β-peptide interactions with (-) nicotine ditartrate and (-) cotinine. Biosens. Bioelectron, 2001, 16, P. 911.

6. Mirkov S.M., Djordjevic A.N., Andric N.L. et al. Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity. Nitric Oxide, 2004, 11, P. 201.

7. Kokubo K., Matsubayashi K., Tategaki H. et al. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano, 2008, 2(2), P. 327.

8. Yang J.M., He W., Ping H. et al. The scavenging of reactive oxygen species and water soluble fullerene synthesis. Chinese. J. Chem., 2004, 22(9), P. 1008.

9. Sheng W., Ping H., Jian Min Z. et al. Novel and efficient synthesis of water-soluble [60] fullerenol by solvent-free reaction. Synthetic Communications, 2005, 35(13), P. 1803.

10. Chiang Long Y. Fullerene Derivatives as Free Radical Scavengers. US patent 5648523. July 15, 1997.

11. Lamparth I., Hirsch A. Water-soluble malonic acid derivatives of C60 with a defined three-dimensional structure J. Chem. Soc. Chem. Commun., 1994, P. 1727–1728.

12. Liang Bing GAN, Chu Ping LUO. Water-soluble fullerene derivatives, synthesis and. characterization of ß-alanine C. 60 adducts. Chinese Chemical letters, 1994, 5(4), P. 275–278.

13. Kotelnikova R.A., Kotelnikov A.I., Bogdanov G.N., Romanova V.S., Kuleshova E.F., Parnes Z.N., Vol’pin M.E. Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60. FEBS Lett., 1996, 389, P. 111–114.

14. Hu Z., Guan W., Wang W., Huang L., Tang X., Xu H., Zhu Z., Xie X., Xing H. Synthesis of amphiphilic amino acid C60 derivatives and their protective effect on hydrogen peroxide-induced apoptosis in rat pheochromocytoma cells. Carbon, 2008, 46, P. 99–109.

15. Kumar A., Rao M.V., Menon S.K. Photoinduced DNA cleavage by fullerene-lysine conjugate. Tetrahedron Lett., 2009, 50, P. 6526–6530.

16. Jiang G., Yin F., Duan J., Li G. Synthesis and properties of novel water-soluble fullerene–glycine derivatives as new materials for cancer therapy. J. Mater. Sci: Mater. Med, 2015, 26, P. 1–7.

17. Grigoriev V.V., Petrova L.N., Ivanova T.A., Kotel’nikova R.A., Bogdanov G.N., Poletayeva D.A., Faingold I.I., Mishchenko D.V., Romanova V.S., Kotel’nikov A.I., Bachurin S.O. Study of the neuroprotective action of hybrid structures based on fullerene C60. Biology Bull, 2011, 38, P. 125–131.

18. Kotel’nikova R.A., Faingol’d I.I., Poletaeva D.A., Mishchenko D.V., Romanova V.S., Shtol’ko V.N., Bogdanov G.N., Rybkin A.Yu., Frog E.S., Smolina A.V., Kushch A.A., Fedorova N.E., Kotel’nikov A.I. Antioxidant properties of water-soluble amino acid derivatives of fullerenes and their role in the inhibition of herpes virus infection. Rus. Chem. Bull., 2011, 6, P. 1172–1176.

19. Leon A., Jalbout A.F., Basiuk V.A. Fullerene-amino acid interactions. A theoretical study. Chem. Phys. Lett. 2008, 452, P. 306–314.

20. Hu Y.H., Ruckenstein E. Steam reforming products used as a hydrogen resource for hydrogen storage in Li2N. J. Mol. Struct. Theochem., 2008, 865, P. 94–97.

21. Semenov K.N., Charykov N.A., Postnov V.N., Sharoyko V.V., Murin I.V. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Rus. Chem. Rev., 2016, 85, P. 38–59.

22. Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. Physico-Chemical Properties of C60-tris-malonic-derivative Water Solutions. J. of Molecular Liquids, 2015, 202, P. 50–58.

23. Semenov K.N., Charykov N.A., Murin I.V., Pukharenko Yu.V. Physico-chemical properties of the fullerenol-70 water solutions. J. of Molecular Liquids, 2015, 202, P. 1–8.

24. Matuzenko M.Yu.,Shestopalova A.A., Semenov K.N., Charykov N.A., Keskinov V.A. Cryometry and excess functions of the adduct of light fullerene C60 and arginine –C60(C6H12NAN4O2)8H8 aqueous solutions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(5), P. 715–725.

25. Matuzenko M.Yu., Tyurin D.P., Manyakina O.S., Semenov K.N., Charykov N.A., Ivanova K.V., Keskinov V.A. Cryometry and excess functions of fullerenols and trismalonates of light fullerenes – C60(OH)22−24 and C70[=C(COOH)2]3, aqueous solutions. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(4), P. 704–714.

26. Pitzer K.S., Pitzer K.S., J.Phys.Chem., 1973, 77(2), P. 268–277.

27. Pitzer K.S., Kim J.J. Activity and osmotic coefficients for mixed electrolytes. J.Amer.Chem.Soc., 1974, 96(18), P. 5701–5707.

28. Filippov V.K., Charykov N.A., Rumyantsev A.V. The generalization of Pitzer’s method on the system with complex formation in the solutions. Rep. Rus. Acad. Sciences. Seria: Physics-Chemistry, 1987, 296(3), P. 665–668.

29. Carykova M.V.,Charykov N.A. Thermodynamic modeling of evaporate sedimentation processes. SPb: Nauka, 2003.

30. Charykov N.A.,Litvak A.M.,Mikhailova M.P.,Moiseev K.D., Yakovlev Yu.P. Solid solution InxGa1−xAs ySbzP 1−y−z. New material of IR opto-electronics. I. Thermodynamic analysis of production conditions for solid solutions, iso-periodic to the substrates InAs and GaSb, by liquid phase epitaxy method. Rus. Phys. and Tech. Semic., 1997, 31(4), P. 410–415.

31. Litvak A.M.,Charykov N.A. New thermodynamic method of calculation of melt-solid phase equilibria (for the example of A3B 5 systems). Rus.J.Phys.Chem., 1990, 64(9), P. 2331–2335.

32. Litvak A.M.,Moiseev K.D.,Charykov N.A.,Yakovlev Yu.P. Hetero-structures AlxGa1−xAsySb1−y/InAs production by LPE method. Rus. Tech. Phys. Lett., 1990, 16(13), P. 41–45.

33. Baranov A.N., Guseinov A.A., Litvak A.M., Popov A.A., Charykov N.A., Sherstnev V.C., Yakovlev Yu.P. Production of solid solutions InxGa1−xAsySb1−y, iso-periodic to GaSb, nearby miscibility gap. Rus. Tech. Phys. Lett., 1990, 16(5), P. 33–38.

34. Stringfellow G.B. Calculation of energy band gaps in quaternary III-IV alloys. J.Elecrctron. Mat., 1981, 10(5), P. 919–936.

35. Stringfellow G.B. Calculation of ternary and quaternary III–V phase diagrams. J.Cryst.Growth, 1982, 58, P. 194–202.

36. Litvak A.M., Charykov N.A. Melt-solid phase equilibria in the system Pb-InAs-InSb. Rus.J.Neorg.Chem., 1990, 35(12), P. 3059–3062.


Review

For citations:


Charykov N.A., Semenov K.N., Keskinov V.V., Garamova P.V., Tyurin D.P., Semenyuk I.V., Petrenko V.V., Kurilenko A.V., Matuzenko M.Yu., Kulenova N.A., Zolotarev A.A., Letenko D.G. Cryometry data and excess thermodynamic functions in the binary system: water soluble bis-adduct of light fullerene C70 with lysine. Assymmetrical thermodynamic model of virtual gibbs energy decomposition – VD-AS. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(3):397-405. https://doi.org/10.17586/2220-8054-2017-8-3-397-405

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)