Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Three-dimensional light bullets in heterogeneous medium of carbon nanotubes with metallic conductivity

https://doi.org/10.17586/2220-8054-2017-8-4-435-440

Abstract

   Theoretical investigation of the dynamics of three-dimensional few-cycle optical pulses (light bullets) in an inhomogeneous medium of carbon nanotubes with metallic conduction was performed. The stable propagation of pulses under research in accordance with inhomogeneous medium parameters was determined.

About the Authors

M. B. Belonenko
Volgograd Institute of Business; Volgograd State University
Russian Federation

Laboratory of Nanotechnology

400048; Yuzhno-Ukrainskaya ul. 2; 400062; Universitetskii pr. 100; Volgograd



I. S. Dvuzhilov
Volgograd State University
Russian Federation

400062; Universitetskii pr. 100; Volgograd



Yu. V. Nevzorova
Volgograd State University
Russian Federation

400062; Universitetskii pr. 100; Volgograd



E. N. Galkina
Volgograd State University; Volgograd State Medical University
Russian Federation

400062; Universitetskii pr. 100; 400131; Pavshikh Bortsov Sq.; Volgograd



References

1. Kaplan A.E., Shkolnikov P.L. Electromagnetic “bubbles” and shock waves: unipolar, nonoscillatig EM solitons. Physical Review Letters, 1995, 75(12), P. 2316–2319.

2. Casperson L.W. Few-cycle pulses in two-level media. Phys. Rev. A., 1998, 57, P. 609.

3. Brabec T., Krausz F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern Physics, 2000, 72, P. 545–591.

4. Schafer T. Wyane C.E. Propagation of ultra-short optical pulses in cubic-nonlinear media. Physica D., 2004, 196, P. 90–105.

5. Kazantseva E.V., Maimistov A.I., Malomed B.A. Propagation and interaction of ultrashort electromagnetic pulses in nonlinear media with a quadratic-cubic nonlinearity. Optics communications, 2001, 188, P. 195–204.

6. Kurizki G., Kozhekin A., Opatrny T., Malomed B. Optical solitons in periodic media with resonant and off-resonant nonlinearities. Progress in Optics E. Wolf, ed., (Elsevier, North-Holland), 2001, 42, P. 93–146.

7. Maimistov A.I. Interaction of fast and slow varying electromagnetic waves propagating in paraelectric or ferroelectric material. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(3), P. 334–338.

8. Saito R., Dresselhaus M.S., Dresselhaus G. Physical properties of carbon nanotubes. Imperial College Press, London, 1999, 251 pp.

9. Reich S., Thomsen C., Maultzsch J. Carbon nanotubes. Basic concepts and physical properties. Wiley-VCH Verlag, Berlin, 2003, 218 pp.

10. Harris P.J.F. Carbon nanotubes and related structures: New materials for the 21<sup>-st</sup> century. Cambridge University Press, Cambridge, 2009, 299 pp.

11. Belonenko M.B., Dvuzhilov I.S, Galkina E.N., Nevzorova Yu.V. Three dimensional few cycle optical pulses in nonlinear medium with carbon nanotubes. Modern Physics Letters B, 2016, 30(28), P. 1650345.

12. Pavani S.R.P., Greengard A., Piestun R. Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system. Appl. Phys. Lett., 2009, 95, P. 021103.

13. Spektor A.N.B., Shamir J. Singular beam microscopy. Appl. Opt., 2008, 47, P. A78–A87.

14. Bozinovic N., Yue Ya., Ren Yo., Tur M., Kristensen P., Huang H., Willner A.E., Ramachandran S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science, 2013, 340, P. 1545.

15. Abramochkin E., Kotova S., Korobtsov A., Losevsky N., Mayorova A., Rakhmatulin M., Volostnikov V. Microobject manipulations using laser beams with nonzero orbital angular momentum. Laser Physics, 2006, 16, P. 842–848.

16. Landau L.D., Lifshits E.M. Field theory (in Russian). Fizmatlit, Moscow, 1988, 536 pp.

17. Bakhvalov N.S. Numerical Methods (Analysis, Algebra, Ordinary Differential Equations) (in Russian). Nauka, Moscow, 1975, 632 pp.


Review

For citations:


Belonenko M.B., Dvuzhilov I.S., Nevzorova Yu.V., Galkina E.N. Three-dimensional light bullets in heterogeneous medium of carbon nanotubes with metallic conductivity. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):435-440. https://doi.org/10.17586/2220-8054-2017-8-4-435-440

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)