Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Random number generator for cryptography

https://doi.org/10.17586/22208054201785600605

Abstract

One key requirement for many cryptograhic schemes is the generation of random numbers. Sequences of random numbers are used at several stages of a standard cryptographic protocol. One simple example is a Vernam cipher, where a string of random numbers is added to message string to generate encrypted code. C = M K. It has been mathematically shown that this simple scheme is unbreakable if key K is as long as M and is used only once. The security of a cryptosystem shall not be based on keeping the algorithm secret but solely on keeping the key secret. The security of a random number generator (RNG) is related to the difficulty of predicting its future sequence values from past values. The quality and unpredictability of secret data is critical to securing communication by modern cryptographic techniques. The generation of such data for cryptographic purposes typically requires an unpredictable physical source of random data. We studied a chaotic circuit which consisted of an inductor, capacitance, diode and thus used for the BB84 protocol. We have studied both pseudo random and true random number generators and evaluated them through various tests like frequency, correlation, NIST etc.

About the Authors

R. Soorat
R. C. Bose centre for cryptology and security, Indian Statistical Institute; School of Physics, University of Hyderabad
India

Kolkata



K. Madhuri
R. C. Bose centre for cryptology and security, Indian Statistical Institute
India

Kolkata



A. Vudayagiri
R. C. Bose centre for cryptology and security, Indian Statistical Institute
Russian Federation

Kolkata



References

1. Bennett C.H., Brassard G. Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, 1984, P. 8.

2. Burrows J.H. Security requirements for cryptographic modules. FIPS, Gaithersburg, 2001, 56 p.

3. Pickholtz R.L., Schilling D.L., Milstein L.B. Theory of spreadspectrum communicationsa tutorial. IEEE Trans. Commun., 1982, 30 (5), P. 855–884.

4. Metropolis N., Ulam S. The Monte Carlo method. J. Am. Stat. Assoc., 1949, 44 (247), P. 335–341.

5. Nazarathy M., Newton S.A., et al. Realtime long range complementary correlation optical time domain reflectometer. J. Lightwave Technol., 1989, 7 (1), P. 24–38.

6. Petrie C., Connelly J. A noisebased IC random number generator for applications in cryptography. IEEE Trans. Circ. Syst. I Fundam. Theory Appl., 2000, 47 (5), P. 615–621.

7. Bucci M., Germani L., et al. A highspeed oscillatorbased truly random number source for cryptographic applications on a smart card IC. IEEE Trans. Comput., 2003, 52 (4), P. 403–409.

8. Stojanovski T., Kocarev L. Chaosbased random number generatorsPart I: analysis. IEEE Trans. Circ. Syst. I Fundam. Theory Appl., 2001, 48 (3), P. 281–288.

9. Stojanovski T., Pihl J., Kocarev L. Chaosbased random number generatorsPart II: Practical realization. IEEE Trans. Circ. Syst. I Fundam. Theory Appl., 2001, 48 (3), P. 382–385.

10. Krhovjak J. Cryptographic random and pseudorandom data generators. Brno, 2009.

11. Matthews T. Suggestions for random number generation in software. RSA Laboratories’ Bulletin, 1996, 1.

12. Ellison C. Cryptographic Random Numbers. IEEE P1363 Working Draft, 1997, 11 p.

13. Buchoveck´a S. Analysis of a True Random Number Generator. Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2012.

14. Knuth D. The Art of Computer Programming: Volume 2, Seminumerical Algorithms, AddisonWesley, 1981.

15. Menezes A., van Oorschot P., Vanstone S. Handbook of Applied Cryptography, CRC Press, 1996.

16. Goldreich O. Foundations of Cryptography Fragments of a Book, 1995, 290 p.

17. Rukhin A. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, 2000, 152 p.

18. Marsaglia G. Random Number CDROM, with The Diehard Battery of Tests of Randomness. Florida State University, 1985.

19. Good I.J. The serial test for sampling numbers and other tests for randomness. Proc. Cambridge Philos. Soc., 1953, 47, P. 276–284.

20. Baron M., Rukhin A.L. Distribution of the Number of Visits For a Random Walk. Communications in Statistics: Stochastic Models, 1999, 15, P. 593–597.

21. Spitzer F. Principles of Random Walk. Princeton: Van Nostrand, especially, 1964, 269 p.

22. Kuusela T. Random Number Generation Using a Chaotic Circuit. J. Nonlinear Sci., 1993, 3, P. 445–458.

23. Matsumoto T., Chua L.O., Tanaka S. Simmplext chaotic nonautonomous circuit. Phys. Rev. A, 1984, 30, 1155.


Review

For citations:


Soorat R., Madhuri K., Vudayagiri A. Random number generator for cryptography. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):600-605. https://doi.org/10.17586/22208054201785600605

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)