Fiber quantum random number generator, based on vacuum fluctuations
https://doi.org/10.17586/2220-8054-2017-8-4-441-446
Abstract
Quantum random number generation allows one to obtain the absolutely random sequences by using nondeterministic physical processes. Fluctuations of the vacuum, recorded by homodyne detection, can be one of the entropy sources in those generators. In this paper, a system of quantum random numbers generation, based on vacuum fluctuations and using a fiber Y-splitter is presented.
About the Authors
A. E. IvanovaRussian Federation
197101; Kronverkskiy, 49; St. Petersburg
S. A. Chivilikhin
Russian Federation
197101; Kronverkskiy, 49; St. Petersburg
G. P. Miroshnichenko
Russian Federation
197101; Kronverkskiy, 49; St. Petersburg
A. V. Gleim
Russian Federation
197101; Kronverkskiy, 49; St. Petersburg
References
1. Scarany V., Bechmann-Pasquinucci H. et al. The security of practical quantum key distribution. Rev. Mod. Phys., 2009, 81, P. 1301–1350.
2. Jennewein T., Achleitner U. et al. A fast and compact quantum random number generator. Rev. Sci. Instrum., 2000, 71(4), P. 1675–1680.
3. Stefanov A., Gisin N. et al. Optical quantum random number generator. Journal of Modern Optics, 2000, 47, P. 595–598.
4. Dynes J. F., Yuan Z. L, et al. A high speed, post-processing free, quantum random number generator. Appl. Phys. Lett., 2008, 93, P. 031109.
5. Wahl M. et al. An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Applied Physics Letters, 2011, 98, P. 171105.
6. Furst H. et al. High speed optical quantum random number generation. Optics express, 2010, 18, P. 13029–13037.
7. Applegate M. et al. Efficient and robust quantum random number generation by photon number detection. Applied Physics Letters, 2015, 107, P. 071106.
8. Trifonov A. and Vig H. Quantum noise random number generator, U.S. Patent N 7284024. 2007. B1.
9. Gabriel C., Wittmann C. et al. A generator for unique quantum random numbers based on vacuum states. Nature Phot., 2010, 4, P. 711–715.
10. Shen Y., Tian L.,Zou H. Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A, 2010, 81, P. 063814.
11. Symul T. ,Assad S. M., Lam P. K. Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett., 2011, 98, P. 231103.
12. Gleim A. V., Egorov V. I. et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics Express, 2016, 24(3), P. 2619–2633.
13. Menezes A., van Oorschot P. , Vanstone S. Handbook of Applied Cryptography. CRC Press., 1996, 816 p.
14. Ivanova A. E, Chivilikhin S. A, Gleim A. V. Quantum random number generator based on homodyne detection. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(2), P. 239–242.
Review
For citations:
Ivanova A.E., Chivilikhin S.A., Miroshnichenko G.P., Gleim A.V. Fiber quantum random number generator, based on vacuum fluctuations. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):441-446. https://doi.org/10.17586/2220-8054-2017-8-4-441-446