Temperature dependence of quantum correlations in 1D macromolecular chains
https://doi.org/10.17586/2220-8054-2019-10-2-141-146
Abstract
We investigate the problem of generating quantum correlations between different sites of a macromolecular chain by vibronic excitation depending on the temperature. The influence of temperature on the model dynamics is taken into account by employing the partial-dressing method based on the modified LangFirsov unitary transformation under the assumption that the chain collective oscillations are in the thermal equilibrium state. To describe quantum correlations between the chain sites in the case of the initial single-vibronic excitation, we use two-time correlation functions of the second order and the logarithmic negativity as the degree of entanglement. We find that at certain temperatures for various model parameters time-stable entanglement can occur in the chain.
About the Authors
A. V. ChizhovRussian Federation
Joliot-Curie, 6, Dubna, 141980
Universitetskaya, 19, Dubna, 141980
D. Chevizovich
Serbia
11001 Belgrade
Z. Ivic
Serbia
11001 Belgrade
S. Galovic´
Serbia
11001 Belgrade
References
1. Davydov A. S. Biology and quantum mechanics. Naukova Dumka, Kiev, 1979, 142–216 (in Russian).
2. Dekker C., Ratner M. A. Electronic properties of DNA. Phys. World, 2001, 14(8), P. 29–33.
3. Conwell E. Polarons and transport in DNA. Topics in Current Chemistry, 2004, 237, P. 73–102.
4. Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592), P. 607–609.
5. Adleman L. M. Molecular computation of solutions to combinatorial problems. Science, 1994, 266(5187), P. 1021–1024.
6. Kahan M., Gil B., Adar R., Shapiro E. Towards molecular computers that operate in a biological environment. Physica D: Nonlinear Phenomena, 2008, 237(9), P. 1165–1172.
7. Goldman N., Bertone P., Chen S., Dessimoz C., Leproust E. M., Sipos B., Birney E. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 2013, 494(7435), P. 77–80.
8. Kumar S. N. A proper approach on DNA based computer. American Journal of Nanomaterials, 2015, 3(1), P. 1–14.
9. Davydov A. S. The theory of contraction of proteins under their excitation. J. Theor. Biol, 1973, 38(3), P. 559–569.
10. Davydov A. S. Solitons in molecular systems. Phys. Scr., 1979, 20(2), P. 387–394.
11. Lang I. G., Firsov Yu. A. Kinetic theory of semiconductors with low mobility. ZhETF, 1962, 43(5/11), P. 1843–1860.
12. Yarkony D., Silbey R. Comments on exciton phonon coupling: Temperature dependence. J. Chem. Phys., 1976, 65(3), P. 1042–1052.
13. Brown D. W., Ivic Z. Unification of polaron and soliton theories of exciton transport. ´ Phys. Rev. B, 1989, 40(14), P. 9876–9887.
14. Cevizovi ˇ c D., Galovi ´ c S., Ivi ´ c Z. Nature of the vibron self-trapped states in hydrogenbonded macromolecular chains. ´ Phys. Rev. E, 2011, 84(1), P. 011920-6.
15. Cevizovi ˇ c D., Galovi ´ c S., Reshetnyak A., Ivi ´ c Z. Vibron self-trapped states in biological macromolecules: Comparison of different ´ theoretical approaches. J. Phys.: Conf. Ser., 2012, 393(1), P. 012033-8.
16. Cevizovi ˇ c D., Galovi ´ c S., Reshetnyak A., Ivi ´ c Z. The vibron dressing in ´ α-helicoidal macromolecular chains. Chin. Phys. B, 2013, 22(6), P. 060501-10.
17. Cevizovi ˇ c D., Ivi ´ c Z, Galovi ´ c S., Reshetnyak A., Chizhov A. On the vibron nature in the system of two parallel macromolecular chains: ´ The influence of interchain coupling. Physica B, 2016, 490, P. 9-15.
18. Cevizovi ˇ c D., Chizhov A. V., Galovi ´ c S. Vibron transport in macromolecular chains with squeezed phonons. ´ Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(5), P. 597-602.
19. Glauber R. J. The quantum theory of optical coherence. Phys. Rev., 1963, 130(6), P. 2529-2539.
20. Vidal G., Werner R. F. Computable measure of entanglement. Phys. Rev. A, 2002, 65(3), P. 032314-11.
Review
For citations:
Chizhov A.V., Chevizovich D., Ivic Z., Galovic´ S. Temperature dependence of quantum correlations in 1D macromolecular chains. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):141-146. https://doi.org/10.17586/2220-8054-2019-10-2-141-146