Thermal expansion coefficients of NaNO2 embedded into the nanoporous glasses
https://doi.org/10.17586/2220-8054-2019-10-2-158-163
Аннотация
The temperature evolution of the crystal structure of sodium nitrite nanoparticles has been studied with heating and cooling using synchrotron radiation diffraction. Nanocomposites have been prepared by embedding melted NaNO2 into the pores of the glasses, average diameters of the pores were 20 nm and 46 nm. Analysis of obtained diffraction patterns has revealed significant difference of the coefficients of thermal expansion (contraction) on heating and on cooling between nanostructured and massive sodium nitrite in the temperature range corresponding to the paraelectric phase. It is confirmed that in these nanocomposites the phase transition from the ferroelectric to paraelectric phase remains the first-order phase transition. Temperature hysteresis of this phase transition is about 10 K.
Об авторах
O. AlekseevaРоссия
A. Naberezhnov
Россия
D. Chernyshov
Франция
A. Fokin
Россия
A. Sysoeva
Россия
E. Rysiakiewicz-Pasek
Польша
Список литературы
1. Levitz P., Ehret G., Sinha S.K., Drake J.M. Porous vycor glass – the microstructure as probed by electron-microscopy, direct energytransfer, small-angle scattering and molecular adsorption. J. Chem. Phys., 1991, 95 (8), P. 6151–6161.
2. Pundsack F.L. The pore structure of chrysotile asbestos. J. Phys. Chem., 1961, 65, P. 30–33.
3. Breck D.W. Zeolite molecular sieves: Structure, Chemistry and Use. A Willey – Interscience Publication Jonh Willey&Sons, New-York, 1974, 771 pp.
4. Janowski F., Heyer W. Porose Gl ¨ aser. Herstellung, Eigenschaften und Anwendung ¨ , Deutscher Verlag f¨ur Grundstoffindustrie, Leipzig, 1982, 274 pp.
5. Huang X. Manufacture of porous glass. J. Non-Cryst. Solids, 1989, 112, P. 58–63.
6. Pan‘kova S.V., Poborchii V.V., Solov‘ev V.G. The giant dielectric constant of opal containing sodium nitrate nanoparticles. J. Phys.: Condens. Matter, 1996, 8, L203–206.
7. Colla E.V., Koroleva E.Y., Kumzerov Yu.A., Savenko B.N. Ferroelectric phase transitions in materials embedded in porous media. Ferroelectr., Lett., 1996, 20, P. 143–147.
8. Kinka M., Banys J., Naberezhnov A. Dielectric properties of sodium nitrite confined in porous glass. Ferroelectrics, 2007, 348, P. 67–74.
9. Rysiakiewicz-Pasek E., Poprawski R., Urbanowicz A., Maczka M. Porous glasses with sodium nitrite impregnations. Optica Applicata, 2005, 35 (4), P. 769–774.
10. Rysiakiewicz-Pasek E., Poprawski R., et al. Properties of porous glasses with embedded ferroelectric materials Jour. of Non-Cryst. Solids, 2006, 352 (40–41), P. 4309–4314.
11. Vakhrushev S.B., Kumzerov Yu.A., et al. 23Na spin-lattice relaxation of sodium nitrite in confined geometry. Phys. Rev. B, 2004, 70, 132102 (3 pp).
12. Naberezhnov A., Fokin A., et al. Structure and properties of confined sodium nitrite. Eur. Phys. J. E., 2003, 12, s21–s24.
13. Naberezhnov A.A., Alekseeva O.A., et al. Order-Parameter Temperature Dependences in Nanocomposites of Porous Glass–Sodium Nitrite. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82 (3), P. 238–241.
14. Beskrovny A., Golosovsky I., et al. Structure evolution and formation of a pre-melted state in NaNO2 confined within porous glass Appl. Phys. A (Suppl.), 2002, 74, s1001–s1003.
15. Tien C., Charnaya E.V., et al. Coexistence of melted and ferroelectric states in sodium nitrite within mesoporous sieves Phys. Rev. B, 2005, 72, 104105 (6 pp.)
Рецензия
Для цитирования:
, , , , , . Наносистемы: физика, химия, математика. 2019;10(2):158-163. https://doi.org/10.17586/2220-8054-2019-10-2-158-163
For citation:
Alekseeva O.A., Naberezhnov A.A., Chernyshov D.Yu., Fokin A.V., Sysoeva A.A., Rysiakiewicz-Pasek E. Thermal expansion coefficients of NaNO2 embedded into the nanoporous glasses. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):158-163. https://doi.org/10.17586/2220-8054-2019-10-2-158-163