Preview

Наносистемы: физика, химия, математика

Расширенный поиск

The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0:98Eu0:02O1:99 nanophosphors

https://doi.org/10.17586/2220-8054-2019-10-2-164-175

Аннотация

ZrO2 nanoparticles doped with 2 mol.% of EuO1:5 were obtained from solutions of inorganic salts, zirconium alkoxide and chelating compounds under hydro and solvothermal conditions. The phase compositions of the synthesized nanophosphors were determined using the methods of X-ray diffraction, photoluminescence and Raman spectroscopy. The changes in a particle size, the value of the specific surface area and its charge depending on the conditions of preparation (the type of solvent, isothermal exposure time) and the precursor nature used in the synthesis were considered. It was found that Zr0:98Eu0:02O1:99 nanoparticles with a high content of the monoclinic phase, synthesized from zirconium and europium acetylacetonates, have the highest luminescence efficiency. At the same time, the maximum photoluminescence lifetime and the least cytotoxicity were characteristic of crystal phosphors with a more symmetrical crystal lattice of the host matrix, as well as a high surface area/volume ratio.

Об авторах

A. Bugrov
Institute of Macromolecular Compounds of RAS ; St. Petersburg Electrotechnical University “LETI”
Россия


R. Smyslov
Institute of Macromolecular Compounds of RAS ; Peter the Great St. Petersburg Polytechnic University
Россия


A. Zavialova
St. Petersburg Electrotechnical University “LETI” ; St. Petersburg State Institute of Technology (Technical University)
Россия


G. Kopitsa
St. Petersburg Nuclear Physics Institute, NRC KI ; Grebenshchikov Institute of Silicate Chemistry RAS
Россия


Список литературы

1. Di Bartolo B., Collins J., Silvestri L. Nano-Optics: Principles enabling basic research and applications, NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2017, 584 p.

2. Gai S., Li C., Yang P., Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev., 2014, 114 (4), P. 2343–2389.

3. Luo W., Liu Y., Chen X. Lanthanide-doped semiconductor nanocrystals: electronic structures and optical properties. Science China Materials, 2015, 58 (10), P. 819–850.

4. Chakraborty A., Debnath G.H., et al. Identifying the correct host – guest combination to sensitize trivalent lanthanide (guest) luminescence: Titanium dioxide nanoparticles as a model host system. J. Phys. Chem. C, 2016, 120 (41), P. 23870–23882.

5. Raj A.K.V., Rao P.P., Sreena T.S., Thara T.R.A. Influence of local structure on photoluminescence properties of Eu3+ doped CeO2 red phosphors through induced oxygen vacancies by contrasting rare earth substitutions. Phys. Chem. Chem. Phys., 2017, 19, P. 20110–20120.

6. Gallino F., Di Valentin C., Pacchioni G. Band gap engineering of bulk ZrO2 by Ti doping. Phys. Chem. Chem. Phys., 2011, 13, P. 17667.

7. Basahel S.N., Ali T.T., Mokhtar M., Narasimharao K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Research Letters, 2015, 10 (1), P. 73.

8. Lovisa L.X., Andres J., et al. Photoluminescent properties of ZrO2: Tm3+, Tb3+, Eu3+ powders – Acombined experimental and theoretical study. Journal of Alloys and Compounds, 2017, 695, P. 3094–3103.

9. Yamamoto O., Arachi Y., et al. Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics, 1998, 4 (5–6), P. 403–408.

10. Sinhamahapatra A., Jeon J.-P., et al. Oxygen-deficient zirconia (ZrO2−x): A new material for solar light absorption. Sci. Rep., 2016, 6, P. 27218.

11. Martin L.P., Glass R.S. Hydrogen sensor based on yttria-stabilized zirconia electrolyte and tin-doped indium oxide sensing electrode. Journal of the Electrochemical Society, 2004, P. 22.

12. Hernandez S., Gionco C., et al. Insights into the sunlight-driven water oxidation by Ce and Er-doped ZrO ´ 2. Front. Chem., 2018, 6, P. 368.

13. Bugrov A.N., Rodionov I.A., et al. Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO2 nanoparticles obtained by hydrothermal method. Int. J. Nanotechnology, 2016, 13 (1/2/3), P. 147–157

14. Garnweitner G. Zirconia nanomaterials: Synthesis and biomedical application. Nanotechnologies for the Life Sciences, 2010, 8, P. 245–285.

15. Almjasheva O.V., Garabadzhiu A.V., et al. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: physics, chemistry and mathematics, 2017, 8 (3), P. 391–396.

16. Ceja-Fdez A., Lopez-Luke T., et al. Labeling of HeLa cells using ZrO ´ 2:Yb3+–Er3+ nanoparticles with upconversion emission. Journal of Biomedical Optics, 2015, 20 (4), P. 046006.

17. Liu Y., Zhou S., et al. Amine-functionalized lanthanide-doped zirconia nanoparticles: Optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J. Am. Chem. Soc., 2012, 134, P. 15083–15090.

18. Escribano P., Julian-Lopez B., et al. Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. J. Mater. Chem., 2008, 18, P. 23–40.

19. Dunne P.W., Munn A.S., et al. Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials. Phil. Trans. R. Soc. A, 2015, 373, P. 20150015.

20. Almjasheva O.V., Smirnov A.V., et al. Structural features of ZrO2–Y2O3 and ZrO2–Gd2O3 nanoparticles formed under hydrothermal conditions. Russian Journal of General Chemistry, 2014, 84 (5), P. 804–809.

21. Moon B.K., Kwon I.M., et al. Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles. Journal of Luminescence, 2007, 122–123, P. 855–857.

22. Almjasheva O.V., Denisova T A. Water state in nanocrystals of zirconium dioxide prepared under hydrothermal conditions and its influence on structural transformations. Russian Journal of General Chemistry, 2017, 87 (1), P. 1–7.

23. Dudnik E.V. Modern methods for hydrothermal synthesis of ZrO2-based nanocrystalline powder. Powder Metallurgy and Metal Ceramics, 2009, 48 (3–4), P. 146–158.

24. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morpholgy of ZrO2 nanoparticles. Nanosystems: physics, chemistry and mathematics, 2013, 4 (6), P. 810–815.

25. Hobbs H., Briddon S., Lester E. The synthesis and fluorescent properties of nanoparticulate ZrO2 doped with Eu using continuous hydrothermal synthesis. Green Chem., 2009, 11, P. 484–491.

26. Tiseanu C., Cojocaru B., et al. Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence. Phys. Chem. Chem. Phys., 2012, 14, P. 12970–12981.

27. Smits K., Olsteins D., et al. Doped zirconia phase and luminescence dependence on the nature of charge compensation. Scientific Reports, 7, P. 44453.

28. Bugrov A.N., Smyslov R.Yu., et al. Phase composition and photoluminescence correlations in nanocrystalline ZrO2:Eu3+ phosphors synthesized under hydrothermal conditions. Nanosystems: physics, chemistry and mathematics, 2018, 9 (3), P. 378–388.

29. Meetei S.D., Singh S.D. Effects of crystal size, structure and quenching on the photoluminescence emission intensity, lifetime and quantum yield of ZrO:Eu nanocrystals. Journal of Luminescence, 2014, 147, P. 328–335.

30. Bugrov A.N., Smyslov R.Yu., et al. Soluble and insoluble polymer-inorganic systems based on poly(methyl methacrylate), modified with ZrO2–LnO1:5 (Ln = Eu, Tb) nanoparticles: Comparison of their photoluminescence. Journal of Luminescence, 2019, 207, P. 157–168.

31. Melekh N.V., Frolova S.V., Aleshina L.A. X-Ray analysis of powdered celluloses obtained with the use of Lewis acids. Polymer Science, Ser. A, 2014, 56, P. 129–136.

32. Bortolotti M., Lutterotti L., Lonardelli I. ReX: a computer program for structural analysis using powder diffraction data. J. Appl. Cryst., 2009, 42 (3), P. 538–539.

33. Bugrov A.N., Zavialova A.Yu., et al. Luminescence of Eu3+ ions in hybrid polymer-inorganic composites based on poly(methyl methacrylate) and zirconia nanoparticles. Luminescence, 2018, P. 1–13.

34. DeMello J.C., Wittmann H.F., Friend R.H. An improved experimental determination of external photoluminescence quantum efficiency. Advanced Materials, 1997, 9, P. 230–232.

35. Smith D.K., Newkirk H.W. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Crystallographica, 1965, 18, P. 983–991.

36. Igawa N., Ishii Y. Crystal structure of metastable tetragonal zirconia up to 1473 K. J. Am. Ceram. Soc., 2001, 84 (5), P. 1169–1171.

37. Martin U., Boysen H., Frey F. Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at temperatures up to 1400 K. Acta Crystallographica Section B, 1993, 49 (3), P. 403–413.

38. Hecht H.G. The interpretation of diffuse reflectance spectra. Journal of Research of the National Bureau of Standards – A. Physics and Chemistry, 1976, 80 (4), 567.

39. Heine C., Girgsdies F., et al. The model oxidation catalyst α-V2O5: insights from contactless in situ microwave permittivity and conductivity measurements. Appl. Phys. A, 2013, 112 (2), P. 289–296.

40. Garcia J.C., Scolfaro L.M.R., et al. Structural, electronic, and optical properties of ZrO2 from ab initio calculations, 2012, ArXiv:1204.2886v1 cond-mat.mtrl-sci.

41. Bunzli J.-C. G. On the design of highly luminescent lanthanide complexes. Coordination Chemistry Reviews, 2015, 293–294, P. 19–47.

42. Tamrakar R.K., Bisen D.P., Upadhyay K., Tiwari S. Synthesis and thermoluminescence behavior of ZrO2:Eu3+ with variable concentration of Eu3+ doped phosphor. Journal of Radiation Research and Applied Sciences, 2014, 7, P. 486–490.

43. Ahemen I., Dejene F.B. Effect of Eu3+ ion concentration on phase transition, site symmetry and quantum efficiency of ZrO2 nanocrystal rods. Journal of Nanoscience and Nanotechnology, 2018, 18, P. 2429–2440.


Рецензия

Для цитирования:


 ,  ,  ,   . Наносистемы: физика, химия, математика. 2019;10(2):164-175. https://doi.org/10.17586/2220-8054-2019-10-2-164-175

For citation:


Bugrov A.N., Smyslov R.Yu., Zavialova A.Yu., Kopitsa G.P. The influence of chemical prehistory on the structure, photoluminescent properties, surface and biological characteristics of Zr0:98Eu0:02O1:99 nanophosphors. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):164-175. https://doi.org/10.17586/2220-8054-2019-10-2-164-175

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)