Humic acid-stabilized superparamagnetic maghemite nanoparticles: surface charge and embryotoxicity evaluation
https://doi.org/10.17586/2220-8054-2019-10-2-184-189
Abstract
Superparamagnetic iron oxide γ-Fe2O3 (maghemite) nanoparticles (SPION) encapsulated into water-soluble microspheres of rock salt were synthesized via a new aerosol spray pyrolysis procedure. Humic acids (HA) were employed to stabilize the aqueous suspensions of γ-Fe2O3 nanoparticles released upon dissolution of the NaCl matrix. The effect of HA on the surface charge of maghemite-based colloids was studied in pH range of 3 – 10. Humic polyanions compensate positive charges on a hydrated γ-Fe2O3 surface resulting in strongly negative ζ-potential (< −40 mV) of colloid even in acidic environment. In neutral and alkaline environment, ζ-potential of maghemite-based colloid drops below −55 mV; thus, HA should effectively stabilize the nanoparticle colloid over the whole pH range studied. Meanwhile, bare maghemite SPION at pH 3 – 6 have ζ-potential in the +20 mV to −20 mV range (isoelectric point at pH 4.35), which is insufficient for electrostatic stabilization of the suspensions. The absence of embryotoxicity of HA-stabilized nanoparticles was demonstrated.
Keywords
About the Authors
A. E. GoldtRussian Federation
Moscow
A. Yu. Polyakov
Russian Federation
Moscow 119991
T. A. Sorkina
Russian Federation
Moscow
A. L. Dubov
Russian Federation
Moscow 119991
G. A. Davidova
Russian Federation
Pushchino 142290
I. I. Selezneva
Russian Federation
Pushchino 142290
Y. V. Maximov
Russian Federation
Moscow 119991
I. A. Presnyakov
Russian Federation
Moscow 119991
N. Yu. Polyakova
Russian Federation
Moscow
E. A. Goodilin
Russian Federation
Moscow 119991
I. V. Perminova
Russian Federation
Moscow 119991
References
1. Song C., Sun W., Xiao Y., Shi X. Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications. Drug Discov. Today, 2019, 24 (3), P. 835–844.
2. Weissleder R., Elizondo G., et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology, 1990, 175 (2), P. 489–493.
3. Rui Y.-P., Liang B., et al. Ultra-large-scale production of ultrasmall superparamagnetic iron oxide nanoparticles for T1-weighted MRI. RSC Adv., 2016, 6 (27), P. 22575–22585.
4. Emashova N.A., Kudryashov V.E., et al. Quo vadis, worldwide nanoindustry. Nanotechnologies Russ., 2016, 11 (3–4), P. 117–127.
5. Dimarco M., Guilbert I., et al. Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. Int. J. Pharm., 2007, 331 (2), P. 197–203.
6. Chekanova A.E., Sorkina T.A., et al. New environmental nontoxic agents for the preparation of core-shell magnetic nanoparticles. Mendeleev Commun., 2009, 19 (2), P. 72–74.
7. Polyakov A.Y., Goldt A.E., et al. Constrained growth of anisotropic magnetic δ-FeOOH nanoparticles in the presence of humic substances. CrystEngComm, 2012, 14 (23), P. 8097–8102.
8. Polyakov A.Y., Sorkina T.A., et al. Mossbauer spectroscopy of frozen solutions as a stepwise control tool in preparation of biocompatible ¨ humic-stabilized feroxyhyte nanoparticles. Hyperfine Interact., 2013, 219 (1–3), P. 113–120.
9. Illes E., Tomb ´ acz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. ´ J. Colloid Interface Sci., 2006, 295 (1), P. 115–123.
10. Demangeat E., Pedrot M., et al. Colloidal and chemical stabilities of iron oxide nanoparticles in aqueous solutions: the interplay of ´ structural, chemical and environmental drivers. Environ. Sci. Nano, 2018, 5 (4), P. 992–1001.
11. Kulikova N.A., Polyakov A.Y., et al. Key Roles of Size and Crystallinity of Nanosized Iron Hydr(oxides) Stabilized by Humic Substances in Iron Bioavailability to Plants. J. Agric. Food Chem., 2017, 65 (51), P. 11157–11169.
12. Perminova I.V., Kovalenko A.N., et al. Design of Quinonoid-Enriched Humic Materials with Enhanced Redox Properties. Environ. Sci. Technol., 2005, 39 (21), P. 8518–8524.
13. Chekanova A.E., Dubov A.L., et al. Soluble microcapsules for non-toxic magnetic fluids. Mendeleev Commun., 2009, 19 (1), P. 4–6.
14. Yang J., Luo Y., et al. Conjugation of Iron Oxide Nanoparticles with RGD-Modified Dendrimers for Targeted Tumor MR Imaging. ACS Appl. Mater. Interfaces, 2015, 7 (9), P. 5420–5428.
15. Kirillova S.A., Almjasheva O.V., Panchuk V.V., Semenov V.G. Solid-phase interaction in ZrO2–Fe2O3 nanocrystalline system. Nanosyst. Phys. Chem. Math., 2018, 9 (6), P. 763–769.
16. Ramos Guivar J.A., Bustamante A., et al. Mossbauer study of intermediate superparamagnetic relaxation of maghemite ( ¨ γ-Fe2O3) nanoparticles. Hyperfine Interact., 2014, 224 (1–3), P. 89–97.
17. Zakharova I.N., Shipilin M.A., Alekseev V.P., Shipilin A.M. Mossbauer study of maghemite nanoparticles. ¨ Tech. Phys. Lett., 2012, 38 (1), P. 55–58.
18. Polyakov A.Y., Lebedev V.A., et al. Non-classical growth of water-redispersible spheroidal gold nanoparticles assisted by leonardite humate. CrystEngComm, 2017, 19 (5), P. 876–886.
19. Israelachvili J. Intermolecular and Surface Forces. Academic Press, Elsevier, Burlington, 2011, 710 p.
20. Nurdin I., Syarofi R., Satriananda. The Effect of pH and Time on The Stability of Superparamagnetic Maghemite Nanoparticle Suspensions. MATEC Web Conf., 2016, 39, 01001, DOI: 10.1051/matecconf/20163901001.
21. Sikora A., Bartczak D., et al. A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium. Anal. Methods, 2015, 7 (23), P. 9835–9843.
22. Vece ˇ ˇ r M., Posp´ısil J. Stability and Rheology of Aqueous Suspensions. ˇ Procedia Eng., 2012, 42, P. 1720–1725.
23. Amal R., Raper J.A., Waite T.D. Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles. J. Colloid Interface Sci., 1992, 151 (1), P. 244–257.
24. Verrall K.E., Warwick P., Fairhurst A.J. Application of the Schulze–Hardy rule to haematite and haematite/humate colloid stability. Colloids Surfaces A Physicochem. Eng. Asp., 1999, 150 (1–3), P. 261–273.
25. Ramos-Tejada M.M., Ontiveros A., Viota J.L., Duran J.D.G. Interfacial and rheological properties of humic acid/hematite suspensions. ´ J. Colloid Interface Sci., 2003, 268 (1), P. 85–95.
26. Peng G., He Y., et al. Differential effects of metal oxide nanoparticles on zebrafish embryos and developing larvae. Environ. Sci. Nano, 2018, 5 (5), P. 1200–1207.
27. Patel S., Jana S., et al. Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem. Toxicol., 2019, 42 (1), P. 1–8.
28. Magro M., De Liguoro M., et al. The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: A study on Daphnia magna adults and embryos. Sci. Rep., 2018, 8 (1), 13017.
Review
For citations:
Goldt A.E., Polyakov A.Yu., Sorkina T.A., Dubov A.L., Davidova G.A., Selezneva I.I., Maximov Y.V., Presnyakov I.A., Polyakova N.Yu., Goodilin E.A., Perminova I.V. Humic acid-stabilized superparamagnetic maghemite nanoparticles: surface charge and embryotoxicity evaluation. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):184-189. https://doi.org/10.17586/2220-8054-2019-10-2-184-189