A model of electron transport through a boson cavity
https://doi.org/10.17586/2220-8054-2018-9-2-171-178
Abstract
We propose a model describing electronic transport through a boson cavity. We use the Jaynes–Cummings model dealing with a two-level quantum dot coupled to a quantized electro-magnetic field and two semi-infinite wires. The mathematical background of our model is given by the theory of self-adjoint extensions of symmetric operators. Using the boundary triplets approach, the gamma-field and the Weyl function were calculated. In addition, we obtained the scattering matrix for the model system.
About the Authors
A. A. BoitsevRussian Federation
Kronverkskiy, 49, St. Petersburg, 197101
J. Brasche
Germany
Erzstr. 1, D-38678 Clausthal-Zellerfeld
H. Neidhardt
Germany
Mohrenstr. 39, D-10117 Berlin
I. Y. Popov
Russian Federation
Kronverkskiy, 49, St. Petersburg, 197101
References
1. Aschbacher W., Jaksic V., Pautrat Y., Pillet C.-A. Transport properties of quasi-free fermions. J. Math. Phys., 2007, 48(3), P. 032101.
2. Cornean H.D., Neidhardt H., Wilhelm L., Zagrebnov V.A. The Cayley transform applied to non-interacting quantum transport. J. Funct. Anal., 2014, 266(3), P. 14211475.
3. Nenciu G. Independent electron model for open quantum systems: Landauer-Bttiker formula and strict positivity of the entropy production. J. Math. Phys., 48(3), P. 033302.
4. Gerry C., Knight P. Introductory Quantum Optics. 2005. Cambridge University Press, Cambridge.
5. Cummings F.W. Reminiscing about thesis work with E.T. Jaynes at Stanford in the 1950s. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46(22), P. 220202.
6. Rodriguez-Lara B., Moya-Cessa H., Klimov A. Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser. Physical Review A, 2005, 71(2), P. 023811.
7. Neidhardt H., Wilhelm L., Zagrebnov V.A. A new model of quantum dot light emitting-absorbing devices. J. Math. Phys. Anal. Geom., 2014, 10(3), P. 350–385.
8. Neidhardt H., Wilhelm L., Zagrebnov V.A. A new model for quantum dot light emitting-absorbing devices: proofs and supplements. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(1), P. 6–45.
9. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. with an appendix by P. Exner, Solvable Models in Quantum Mechanics, second ed., AMS Chelsea Publishing, Providence, 2005.
10. Pavlov B.S., The theory of extensions and explicity-solvable models, Russ. Math. Surv., 1987, 42(6), P. 127–168.
11. Albeverio S., Kurasov P. Singular perturbations of differential operators. Solvable Schrodinger type operators (London Mathematical Society Lecture Notes 271), Cambridge Univ. Press, Cambridge. 2000.
12. Popov I.Y., Kurasov P.A., Naboko S.N., Kiselev A.A., Ryzhkov A.E., Yafyasov A.M., Miroshnichenko G.P., Karpeshina Yu.E., Kruglov V.I., Pankratova T.F., Popov A.I.: A distinguished mathematical physicist Boris S. Pavlov. Nanosystems: Phys. Chem. Math. 2016, 7, P. 782–788.
13. Behrndt J., Malamud M.M., Neidhardt H. Scattering matrices and Weyl function. Proc. London Math. Soc., 2008, 97(3), P. 568–598.
14. Boitsev A.A., Neidhardt H., Popov I.Y. Dirac operator coupled to bosons. Nanosystems: Phys. Chem. Math., 2016, 7, P. 332–339.
15. Behrndt J., Langer M., Lotoreichik V. Boundary triples for Schrodinger operators with singular interactions on hypersurfaces.¨ Nanosystems: Phys. Chem. Math., 2016, 7, P. 290–302.
16. Mantile A., Posilicano A. Laplacians with singular perturbations supported on hypersurfaces. Nanosystems: Phys. Chem. Math., 2016, 7, P. 315–323.
17. Boitsev A.A., Brasche J.F., Malamud M.M., Neidhardt H., Popov I.Yu. Boundary triplets, tensor products and point contacts to reservoirs. arXiv:1710.07525v1 [math-ph], 2017, 62 pages (accepted in Ann. Henri Poincare).
18. Derkach V.A., Malamud M.M. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal., 1991, 95(1), P. 1–95.
19. Malamud M.M. Some classes of extensions of a Hermitian operator with lacunae, Ukra¨ın. Mat. Zh., 1992, 44(2), P. 215–233.
20. Baumgartel H., Wollenberg M. Mathematical Scattering Theory. Akademie-Verlag, Berlin, 1983.
21. Kato T. Perturbation Theory for Linear Operators. Springer-Verlag New York, Inc., New York, 1966.
22. Yafaev D.R. Mathematical Scattering Theory: General Theory. Translations of Mathematical Monographs, 105. American Mathematical Society, Providence, RI, 1992.
23. Donoghue W.F. Monotone Matrix Functions and Analytic Continuation. Springer Verlag, Berlin and New York, 1974.
Review
For citations:
Boitsev A.A., Brasche J., Neidhardt H., Popov I.Y. A model of electron transport through a boson cavity. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):171–178. https://doi.org/10.17586/2220-8054-2018-9-2-171-178