Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics

https://doi.org/10.17586/2220-8054-2019-10-2-190-198

Abstract

Single-phase powders of Ba4Y3F17:Yb:Pr solid solutions with an average agglomerate size of 400 nm were synthesized by co-precipitation from aqueous solutions. It was shown that the down-conversion mechanism in the investigated samples was quantum cutting, with one photon absorbed by Pr3+ ions resulting in two photons emitted by Yb3+ ions. At first, overall the external quantum yield of down-conversion luminescence measured appeared to be relatively high, with a maximum value of 2.9 % for the Ba4Y3F17:Pr(0.1 %):Yb(10 %) sample. It makes this compound promising for Si-based solar cells efficiency enhancement.

About the Authors

S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov str., Moscow, 119991 



A. S. Nizamutdinov
Kazan Federal University
Russian Federation

18 Kremljovskaya, Kazan, 420008 



M. N. Mayakova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov str., Moscow, 119991 



V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov str., Moscow, 119991 



E. I. Madirov
Kazan Federal University
Russian Federation

18 Kremljovskaya, Kazan, 420008 



A. R. Khadiev
Kazan Federal University
Russian Federation

18 Kremljovskaya, Kazan, 420008 



D. A. Spassky
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation

Leninskie Gory, Moscow 119991



I. A. Kamenskikh
Physics Faculty of Lomonosov Moscow State University
Russian Federation

Leninskie Gory, Moscow 119991



A. D. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

31 Leninsky pr., Moscow,119991



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

31 Leninsky pr., Moscow,119991



M. A. Marisov
Kazan Federal University
Russian Federation

18 Kremljovskaya, Kazan, 420008



V. V. Semashko
Kazan Federal University
Russian Federation

18 Kremljovskaya, Kazan, 420008 



P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov str., Moscow, 119991 



References

1. Weber E.R. Photovoltaics moving into the terawatt age. Proc. SPIE 10368, Next Generation Technologies for Solar Energy Conversion VIII, 1036803, 25 August 2017, DOI: 10.1117/12.2277978.

2. Green M.A., Bremner S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Mater., 2017, 16, P. 23–34.

3. Han G., Zhang S., Boix P.P., Wong L.H., Sun L., Lien S.Y. Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, P. 246–291.

4. Engelhart P., Wendt J., Schulze A., Klenke C., Mohr A., Petter K., Stenzel F., Hornlein S., Kauert M., Jungh ¨ anel M., Barkenfelt B., ¨ Schmidt S., Rychtarik D., Fischer M., M¨uller J.W., Wawer P. R&D pilot line production of multi-crystalline Si solar cells exceeding cell efficiencies of 18 %. Energy Procedia, 2011, 8, P. 313–317.

5. Yang J., Myong S.Y., Lim K.S. Novel ultrathin LiF interlayers for efficient light harvesting in thin-film Si tandem solar cells. Solar Energy, 2015, 114, P. 259–267.

6. Fischer S., Ivaturi A., Jakob P., Kramer K.W., Martin-Rodriguez R., Meijerink A., Richards B., Goldschmidt J.Ch. Upconversion solar ¨ cell measurements under real sunlight. Optical Materials, 2018, 84, P. 389–395.

7. Kuznetsov S., Ermakova Yu., Voronov V., Fedorov P., Busko D., Howard I.A., Richards B.S., Turshatov A. Up-conversion Quantum Yield of SrF2:Yb3+, Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. J. Mater. Chem. C., 2018, 6, P. 598–604.

8. Huang X., Han S., Huang W., Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev., 2013, 42, P. 173–201.

9. Kaiser M., Wurth C., Kraft M., Hyppanen I., Soukka T., Resch-Genger U. Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations. Nanoscale, 2017, 9, P. 10051–10058.

10. Etchart I., Huignard A., Berard M., Nordin M.N., Hernandez I., Curry R.J., Gillin W.P., Cheetham A.K. Oxide phosphors for efficient light upconversion: Yb3+ and Er3+ co-doped Ln2BaZnO5 (Ln = Y, Gd). J. Mater. Chem., 2010, 20, P. 3989–3994.

11. Pokhrel M., Kumar G.A., Sardar D.K. Highly efficient NIR to NIR and VIS upconversion in Er3+ and Yb3+ doped in M2O2S (M = Gd, La, Y). J. Mater. Chem. A, 2013, 1, P. 11595–11606.

12. Piper W.W., DeLuca J.A., Ham F.S. Cascade fluorescent decay in P3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light. J. Lumin., 1974, 8, P. 344–348.

13. Lee T.-J., Luo L.-Y., Cheng B.-M., Diau W.-G., Chen T.-M. Investigation of Pr3+ as a sensitizer in quantum-cutting fluoride phosphors. Appl. Phys. Lett., 2008, 92, P. 081106-1–081106-3.

14. Van der Ende B.M., Aarts L., Meijerink A. Near-infrared quantum cutting for photovoltaics. Adv. Mater., 2009, 21, P. 3073–3077.

15. Song P., Jiang C. Modeling of down converter based on Pr3+–Yb3+ codoped fluoride glasses to improve sc-Si solar cells efficiency. AIP Adv., 2012, 2, P. 042130-1–042130-10.

16. Zhang L., Xu J., Hu Y., Chen G., Wang Zh. Near-infrared quantum cutting in Pr3+–Yb3+ co-doped oxyfluoride glass ceramics containing CaF2 nanocrystals. J. Wuhan University of Technology-Mater. Sci. Ed., 2013, P. 455–459.

17. Shao W., Chen G., Ohulchanskyy T.Y., Yang Ch., Agren H., Prasad P.N. A core – multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management. Nanoscale, 2017, 9, P. 1934–1941.

18. Kuznetsov S.V., Proydakova V.Yu., Morozov O.A., Gorieva V.G., Marisov M.A., Voronov V.V., Yapryntsev A.D., Ivanov V.K., Nizamutdinov A.S., Semashko V.V., Fedorov P.P. Synthesis and quantum yield investigations of the Sr1−x−yPrxYbyF2+x+y luminophores for photonics. Nanosystems: physics, chemistry, mathematics, 2018, 9(5), P. 663–668.

19. Kuznetsov S.V., Morozov O.A., Gorieva V.G., Mayakova M.N., Marisov M.A., Voronov V.V., Yapryntsev A.D., Ivanov V.K., Nizamutdinov A.S., Semashko V.V., Fedorov P.P. Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics. J. Fluor. Chem., 2018, 211, P. 70–75.

20. Kuznetsov S.V., Fedorov P.P., Voronov V.V., Samarina K.S., Ermakov R.P., Osiko V.V. Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. Russ. J. Inorg. Chem., 2010, 55(4), P. 484–493.

21. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Ermakov R.P., Samarina K.S., Popov A.I., Osiko V.V. Co-precipitation of yttrium and barium fluorides from aqueous solutions. Mater. Res. Bull., 2012, 47, P. 1794–1799.

22. M. Karbowiak, J. Cichos Does BaYF5 nanocrystals exist? - The BaF2-YF3 solid solution revisited using photoluminescence spectroscopy. Journal of Alloys and Compounds, 2016, 673, P. 258–264.

23. Li T., Li Y., Luo R., Ning Zh., Zhao Y., Liu M., Lai X., Zhong Ch., Wang Ch., Zhang J., Bi J., Gao D. Novel Ba(Gd1−xYx)0:78F5: 20 mol% Yb3+, 2 mol% Tm3+ (0≤x≤1.0) solid solution nanocrystals: A facile hydrothermal controlled synthesis, enhanced upconversion luminescent and paramagnetic properties. J. Alloys Comp., 2018, 740, P. 1204–1214.

24. Fedorov P.P., Kuznetsov S.V., Mayakova M.N., Voronov V.V., Ermakov R.P., Baranchikov A.E., Osiko V.V. Coprecipitation from aqueous solutions to prepare binary fluorides. Russ. J. Inorg. Chem., 2011, 56(10), P. 1525–1531.

25. Yasyrkina D.S., Kuznetsov S.V., Ryabova A.V., Pominova D.V., Voronov V.V., Ermakov R.P., Fedorov P.P. Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1−x−yYbxEryF4. Nanosystems: physics, chemistry, mathematics, 2013, 4(5), P. 648–656.

26. Sobolev B.P., Tkachenko N.L. Phase diagrams of BaF2−(Y, Ln)F3 systems. J. Less. Common Met., 1982, 85, P. 155–170.

27. Maksimov B.A., Solans Kh., Dudka A.P., et al. The fluorite-matrix-based Ba4R3F17 (R=Y,Yb) crystal structure. Ordering of cations and specific features of the anionic motif. Crystallogr. Rep., 1996, 41(1), P. 50.

28. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalkogenides. Acta Cryst., 1976, A32, P. 751–767.

29. Aarts L., van der Ende B., Reid M., Meijerink A. Downconversion for Solar Cells in YF3:Pr3+, Yb3+. Spectroscopy Letters, 2010, 43, P. 373–381.

30. de Wild J., Meijerink A., Rath J.K., van Sark W.G.J.H.M., Schropp R.E.I. Upconverter solar cells: materials and applications. Energy Environ. Sci., 2011, 4, P. 4835–4848.


Review

For citations:


Kuznetsov S.V., Nizamutdinov A.S., Mayakova M.N., Voronov V.V., Madirov E.I., Khadiev A.R., Spassky D.A., Kamenskikh I.A., Yapryntsev A.D., Ivanov V.K., Marisov M.A., Semashko V.V., Fedorov P.P. Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):190-198. https://doi.org/10.17586/2220-8054-2019-10-2-190-198

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)