Calculations of the onset temperature for tunneling in multispin systems
https://doi.org/10.17586/2220-8054-2017-8-4-454-461
Abstract
Transitions between magnetic states of a system coupled to a heat bath can occur by exceeding the energy barrier, but as temperature is lowered quantum mechanical tunneling through the barrier becomes the dominant transition mechanism. A method is presented for estimating the onset temperature for tunneling in a system with an arbitrary number of spins using the second derivatives of the energy with respect to the orientation of the magnetic vectors at the first order saddle point on the energy surface characterizing the over-the-barrier mechanism. An application to a monomer and a dimer of molecular magnets containing a Mn4 group is presented and the result found to be in excellent agreement with reported experimental measurements.
About the Authors
S. M. VlasovRussian Federation
Science Institute and Faculty of Physical Sciences
197101; Kronverkskiy, 49; St. Petersburg; 107 Reykjav´ık; Iceland
P. F. Bessarab
Russian Federation
Science Institute and Faculty of Physical Sciences
197101; Kronverkskiy, 49; St. Petersburg; 107 Reykjav´ık; Iceland
V. M. Uzdin
Russian Federation
197101; Kronverkskiy, 49; 198504; St. Petersburg
H. J´onsson
Russian Federation
Science Institute and Faculty of Physical Sciences; Department of Applied Physics
107 Reykjav´ık; Iceland; FIN-00076; Espoo; Finland
References
1. Brown, Jr. W.F. Thermal Fluctuations of Fine Ferromagnetic Particles. IEEE Transactions on Magnetics, 1979, MAG-15, P. 1196–1208.
2. Braun H.-B. Kramers’s rate theory, broken symmetries and magnetization reversal. J. Appl. Physics, 1994, 76, P. 6310–6315.
3. Chudnovsky E.M., Tejada J. Macroscopic Quantum Tunneling of the Magnetic Moment. Cambridge University Press, New York.: 1998.
4. Bokacheva L., Kent A.D. and Walters M.A. Crossover between Thermally Assisted and Pure Quantum Tunneling in Molecular Magnet Mn12-Acetate. Phys. Rev. Lett., 2000, 85, P. 4803–4806.
5. Mertes K.M., Zhong Y., et al. Abrupt crossover between thermally activated relaxation and quantum tunneling in a molecular magnet. Europhys. Lett., 2001, 55, P. 874–879.
6. Wernsdorfer W., Murugesu M. and Christou G. Resonant Tunneling in Truly Axial Symmetry Mn<sub>12</sub> Single-Molecule Magnets: Sharp Crossover between Thermally Assisted and Pure Quantum Tunneling. Phys. Rev. Lett., 2006, 96, 057208 (4 pp.)
7. Loth S., Baumann S., et al. Bistability in atomic-scale antiferromagnets. Science, 2012, 335, P. 196–199.
8. Chudnovsky E.M. Phase transitions in the problem of the decay of a metastable state. Phys. Rev. A, 1992, 46, P. 8011–8014.
9. Chudnovsky E. M., Garanin D. A. First- and Second-Order Transitions between Quantum and Classical Regimes for the Escape Rate of a Spin System. Phys. Rev. Lett., 1997, 79, P. 4469–4472.
10. Park C.-S., Yoo S.-K. and Yoon D.-H. Quantum-classical crossover of the escape rate in a biaxial spin system with an arbitrarily directed magnetic field. Phys. Rev. B, 2000, 61, P. 11618–11624.
11. Kim G.-H. and Chudnovsky E.M. Escape-rate crossover between quantum and classical regimes in molecular magnets: A diagonalization approach. Europhys. Lett., 2000, 52, P. 681–687.
12. Garanin D.A. and Chudnovsky E.M. Quantum statistical metastability for a finite spin. Phys. Rev. B, 2000, 63, 024418 (7 pp.)
13. Owerre S. A. and Paranjape M. B. Phase transition between quantum and classical regimes for the escape rate of dimeric molecular nanomagnets in a staggered magnetic field. Phys. Lett. A, 2014, 378, P. 1407–1412.
14. Ulyanov V.V. and Zaslavskii O.B. New methods in the theory of quantum spin systems. Phys. Rep., 1992, 216, P. 179–251.
15. Owerre S. A., Paranjape M. B. Macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems. Phys. Rep., 2015, 546, P. 1–60.
16. Wernsdorfer W. and Sessoli R. Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters. Science, 1999, 284, P. 133–135.
17. Kang D.H. and Kim G.-H. Theoretical study of abrupt or gradual crossover of the escape rate in single-molecule magnets. Phys. Rev. B, 2006, 74, 184418 (5 pp.)
18. Kim G.-H., Kang D.H. and Shin M.C. Quantum-classical crossover of the escape rate in the biaxial nanomagnets with a higher order symmetry. Eur. Phys. J. B, 2011, 83, P. 63–67.
19. Vlasov S., Bessarab P.F., Uzdin V.M. and J´onsson H. Classical to quantum mechanical tunneling mechanism crossover in thermal transitions between magnetic states. Faraday Discuss., 2016, 195, P. 93–109.
20. Bessarab P.F., Uzdin V.M. and J´onsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Comp. Phys. Commun., 2015, 196, P. 335–347.
21. Bessarab P.F., Uzdin V.M. and J´onsson H. Harmonic Transition State Theory of Thermal Spin Transitions. Phys. Rev. B, 2012, 85, 184409 (4 pp.)
22. Bessarab P.F., Uzdin V.M. and J´onsson H. Potential Energy Surfaces and Rates of Spin Transitions. Z. Phys. Chem., 2013, 227, P. 1543–1557
23. Bessarab P.F., Uzdin V.M. and J´onsson H. Size and Shape Dependence of Thermal Spin Transitions in Nanoislands. Phys. Rev. Lett., 2013, 110, 020604 (5 pp.)
24. Moskalenko M. , Bessarab P.F., Uzdin V.M. and J´onsson H. Qualitative Insight and Quantitative Analysis of the Effect of Temperature on the Coercivity of a Magnetic System. AIP Advances, 2016, 6, 025213 (8 pp.)
25. Lobanov I., J´onsson H. and Uzdin V. M. Mechanism and activation energy of magnetic skyrmion annihilation obtained from minimum energy path calculations. Phys. Rev. B, 2016, 94, 174418 (7 pp.)
26. Bessarab P.F. Comment on “Path to collapse for an isolated N´eel skyrmion”. Phys. Rev. B, 95, 2017, 136401 (2 pp.)
27. Ivanov A. , Bessarab P.F., Uzdin V.M. and J´onsson H. Magnetic exchange force microscopy: Theoretical analysis of induced magnetization reversals. Nanoscale, 2017, Accepted Manuscript, DOI: 10.1039/C7NR04036A
28. Smit J., Beljers H. Ferromagnetic resonance absorption in BaFe12O19, a highly anisotropic crystal. Philips Res. Rep., 1955, 10, P. 113–130.
29. Suhl H. Ferromagnetic resonance in nickel ferrite between one and two kilomegacycles. Phys. Rev., 1955, 97, P. 555–557.
30. Miller W.H. Semiclassical limit of quantum mechanical transition state theory for nonseparable systems. J. Chem. Phys., 1975, 62, P. 1899–1906.
31. Callen C., Coleman S. Fate of the false vacuum. II. First quantum corrections. Phys. Rev. D, 1977, 16, P. 1762–1768
32. Benderskii V. A., Goldanskii V. I. and Makarov D. E. Quantum dynamics in low-temperature chemistry. Phys. Rep., 1993, 233, P. 195–339.
33. Mills G., Schenter G. K., Makarov D. E. and J´onsson H. Generalized path integral based quantum transition state theory. Chem. Phys. Letters, 1997, 278, P. 91–96.
34. Mills G., Schenter G. K., Makarov D. E. and J´onsson H. RAW Quantum transition state theory. proceeding of “Classical and Quantum Dynamics in Condensed Phase Simulations”, Villa Marigola, Lerici, Italy, 1997, 405 pp.
35. KIauder J. Path integrals and stationary-phase approximations. Phys. Rev. D, 1979, 19, P. 2349–2356.
36. Kochetov E. SU(2) coherentstate path integral. J. Math. Phys., 1995, 36, P. 4667–4679.
37. Fradkin E. Field Theories of Condensed Matter Physics. Cambridge University Press, New York.: 2013, 190 pp.
38. Aubin S. M. J. et. al. Resonant Magnetization Tunneling in the Trigonal Pyramidal MnIV MnIII 3 Complex [Mn4O3Cl(O2CCH3)3(dbm)3]. J. Am. Chem. Soc., 1998, 120, P. 4991–5004.
39. Edwards R. S., Hill S., et. al. A comparative high frequency EPR study of monomeric and dimeric Mn<sub>4</sub> single-molecule magnets, Polyhedron, 2003, 22, P. 1911–1916.
40. Wernsdorfer W., Aliaga-Alcalde N., Hendrickson D. N., Christou G. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature, 2002, 416, P. 406–409.
Review
For citations:
Vlasov S.M., Bessarab P.F., Uzdin V.M., J´onsson H. Calculations of the onset temperature for tunneling in multispin systems. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):454-461. https://doi.org/10.17586/2220-8054-2017-8-4-454-461