PVP-stabilized tungsten oxide nanoparticles (WO3) nanoparticles cause hemolysis of human erythrocytes in a dose-dependent manner
https://doi.org/10.17586/2220-8054-2019-10-2-199-205
Abstract
Tungsten oxide nanoparticles (WO3 NPs) are increasingly being considered as a promising material for biomedical applications. However, toxicological information on their effect on red blood cells (RBCs) remains very scarce. In this study, we examined the toxicity of PVPstabilized tungsten oxide nanoparticles against human RBCs. Optical microscopy and spectrophotometry data showed that WO3 NPs induce hemolytic activity. This effect is probably attributed to the direct interaction of the nanoparticles with the RBCs, resulting in the oxidative stress, membrane injury, and subsequent hemolysis.
About the Authors
A. L. PopovRussian Federation
Pushchino, Moscow region, 142290
I. V. Savintseva
Russian Federation
Pushchino, Moscow region, 142290
N. R. Popova
Russian Federation
Pushchino, Moscow region, 142290
T. O. Shekunova
Russian Federation
Moscow, 119991
O. S. Ivanova
Russian Federation
Moscow, 119991
A. B. Shcherbakov
Ukraine
Kyiv, D0368
D. A. Kozlov
Russian Federation
Moscow, 119991
V. K. Ivanov
Russian Federation
Moscow, 119991
References
1. Hosseini F., Rasuli R., Jafarian V. Immobilized WO3 nano-particles on graphene oxide as a photo-induced antibacterial agent against UV resistant Bacillus Pumilus. J. Phys. D: Appl. Phys., 2018, 51 (14), 145403.
2. Hariharan V., Radhakrishnan S., et al. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Talanta, 2011, 85 (4), P. 2166–2174.
3. Deng K., Hou Z., et al. Enhanced Antitumor Efficacy by 808 nm Laser-Induced Synergistic Photothermal and Photodynamic Therapy Based on a Indocyanine-Green-Attached W18O49 Nanostructure. Adv. Funct. Mater., 2015, 25 (47),P. 7280–7290.
4. Chen Z., Wang Q.,et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv Mater., 2013, 25 (14), P. 2095–2100.
5. Sharker S.Md., Kim S.M., et al. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. J. Control. Release, 2015, 217, P. 211–220.
6. Zhou Z., Kong B., et al. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Sci. Rep., 2014, 4, 3653.
7. Liu J., Han J., et al. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungstenbased theranostic probe. Nanoscale, 2014, 6 (11), P. 5770–5776.
8. Liu P., Wang Y., et al. Ultrasmall WO3−x@γ-poly-l-glutamic Acid Nanoparticles as a Photoacoustic Imaging and Effective PhotothermalEnhanced Chemodynamic Therapy Agent for Cancer. ACS Appl. Mater. Interfaces, 2018, 10 (45), P. 38833–38844.
9. Chen L.Q., Fang L., et al. Nanotoxicity of silver nanoparticles to red blood cells: Size-dependent adsorption, uptake and hemolytic activity. Chem. Res. Toxicol., 2015, 28 (3), P. 501–509.
10. Aisaka Y., Kawaguchi R., Watanabe S. Hemolysis Caused by Titanium Dioxide Particles. Inhalation Toxicol., 2008, 20, P. 891–893.
11. Vinardell M.P., Sorde A., et al. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte ´ hemolysis: influence of cell source, temperature, and size. J. Nanopart. Res., 2015, 17, 80.
12. Babu E.P., Subastri A., et al. Size Dependent Uptake and Hemolytic Effect of Zinc Oxide Nanoparticles on Erythrocytes and Biomedical Potential of ZnO-Ferulic acid Conjugates. Sci. Rep., 2017, 7, 4203.
13. Dobrovolskaia M.A., Clogston J.D., et al. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett., 2018, 8, P. 2180– 2187.
14. El Hotaby W., Sherif H.H.A., et al. Assessment of in situ-Prepared Polyvinylpyrrolidone-Silver Nanocomposite for Antimicrobial Applications. Acta Phys. Pol. A, 2017, 131 (6), P. 1554–1560.
15. Li X.G., Kresse I., et al. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer, 2001, 42 (16), P. 6859–6869.
16. Liu H., Zhang B., et al. Hydrothermal synthesis of monodisperse Ag2Se nanoparticles in the presence of PVP and KI and their application as oligonucleotide labels. J. Mater. Chem., 2008, 18 (22), P. 2573–2580.
17. Melnikova O.A., Samkova I.A., Melnikov M.Yu., Petrov A.Yu. IR-spektroskopic studies of chemical structure of polymeric complexes of medicinal substances on the basis of pollyvinilpirrolidon. Advances in current natural sciences, 2016, 8, P. 42–49.
18. Basha M.A.F. Magnetic and optical studies on polyvinylpyrrolidone thin films doped with rare earth metal salts. Polym. J., 2010, 42, P. 728–734.
19. Balzer R., Drago V., Schreiner W.H., Probst L.F.D. Synthesis and Structure-Activity Relationship of a WO3 Catalyst for the Total Oxidation of BTX. J. Braz. Chem. Soc., 2014, 25 (11), P. 2026–2031.
20. Prabhu N., Agilan S., et al. Effect of temperature on the structural and optical properties of WO3 nanoparticles prepared by solvo thermal method. Digest Journal of Nanomaterials and Biostructures, 2013, 8 (4), P. 1483–1493.
21. Kumar V.B., Mohanta D. Formation of nanoscale tungsten oxide structures and colouration characteristics. Bull. Mater. Sci., 2011, 34 (3), P. 435–442.
22. He G.H., Liang C.J., et al. Preparation of novel Sb2O3/WO3 photocatalysts and their activities under visible light irradiation. Mater. Res. Bull., 2013, 48 (6), P. 2244–2249.
23. Saha K., Bajaj A., Duncan B., Rotello V.M. Beauty is skin deep: a surface monolayer perspective on nanoparticle interactions with cells and bio-macromolecules. Small, 2011, 7, P. 1903–1918.
24. Mout R., Moyano D.F., Rana S., Rotello V.M. Surface functionalization of nanoparticles for nanomedicine. Chem. Soc. Rev., 2012, 41, P. 2539–2544.
25. Zhu Z.J., Posati T., et al. The Interplay of Monolayer Structure and Serum Protein Interactions on the Cellular Uptake of Gold Nanoparticles. Small, 2012, 8, P. 2659–2663.
26. Chompoosor A., Saha K., et al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small, 2010, 6, P. 2246–2249.
27. Moyano D.F., Goldsmith M., et al. Nanoparticle Hydrophobicity Dictates Immune Response. J. Am. Chem. Soc., 2012, 134, P. 3965–3967.
28. Walkey C.D., Chan W.C.W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev., 2012, 41, P. 2780–2799.
29. Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol., 2012, 7, P. 779–786.
30. Arvizo R.R., Giri K., et al. Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles. PLoS One, 2012, 7, e33650.
31. Salvador-Morales C., Flahaut E., et al. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol., 2006, 43, P. 193–201.
32. Owens D.E., Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307, P. 93–102.
33. Saha K., Moyano D.F., Rotello V.M. Protein coronas suppress the hemolytic activity of hydrophilic and hydrophobic nanoparticles. Mater Horiz., 2014, 1, P. 102–105.
Review
For citations:
Popov A.L., Savintseva I.V., Popova N.R., Shekunova T.O., Ivanova O.S., Shcherbakov A.B., Kozlov D.A., Ivanov V.K. PVP-stabilized tungsten oxide nanoparticles (WO3) nanoparticles cause hemolysis of human erythrocytes in a dose-dependent manner. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):199-205. https://doi.org/10.17586/2220-8054-2019-10-2-199-205