Waveguides with fast oscillating boundary
https://doi.org/10.17586/2220-8054-2017-8-2-160-165
Аннотация
We consider an elliptic operator in a planar waveguide with a fast oscillating boundary where we impose Dirichlet, Neumann or Robin boundary conditions assuming that both the period and the amplitude of the oscillations are small. We describe the homogenized operator, establish the norm resolvent convergence of the perturbed resolvent to the homogenized one, and prove the estimates for the rate of convergence. It is shown that under the homogenization, the type of the boundary condition can change.
Список литературы
1. Friedman A., Hu B., Liu Y. A boundary value problem for the poisson equation with multi-scale oscillating Boundary. J. Diff. Eq., 1997, 137, P. 54–93.
2. Friedman A., Hu B. A Non-stationary Multi-scale Oscillating Free Boundary for the Laplace and Heat Equations. J.Diff. Eq., 1997, 137, P. 119–165.
3. Belyaev A.G., Pyatnitskii A.L., Chechkin G.A. Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary. Siberian Math. J., 1998, 39, P. 621–644.
4. Kozlov V.A., Nazarov S.A. Asymptotics of the spectrum of the Dirichlet problem for the biharmonic operator in a domain with a deeply indented boundary. St. Petersburg Math. J., 2011, 22, P. 941–983.
5. Chechkin G.A., Chechkina T.P. On homogenization of problems in domains of the “Infusorium” type. J. Math. Sci., New York, 2004, 120, P. 1470–1482
6. Mikelic A. ´ Rough boundaries and wall laws. Qualitative properties of solutions to partial differential equations, Lecture notes of Necas Center for mathematical modeling, ed. by E. Feireisl, P. Kaplicky and J. Malek, Vol. 5, Matfyzpress, Publishing House of the Faculty of Mathematics and Physics Charles University in Prague, Prague, 2009, P. 103–134.
7. Nazarov S.A. The two terms asymptotics of the solutions of spectral problems with singular perturbations. Math. USSR-Sb., 1991, 69, P. 307–340.
8. Nazarov S.A. Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution. St. Petersburg Math. J., 2008, 19, P. 297–326.
9. Amirat Y., Chechkin G.A., Gadyl’shin R.R. Asymptotics for eigenelements of Laplacian in domain with oscillating boundary: multiple eigenvalues. Appl. Anal., 2007, 86, P. 873–897.
10. Amirat Y., Chechkin G.A., Gadylshin R.R. Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary. Computational Mathematics and Mathematical Physics, 2006, 46, P. 97–110.
11. Nazarov S.A. Asymptotics of solutions and modeling the problems of elasticity theory in domains with rapidly oscillating boundaries. Izv. Math., 2008, 72.
12. Gobbert M.K., Ringhofer C.A. An Asymptotic Analysis for a Model of Chemical Vapor Deposition on a Microstructured Surface. SIAM Jour. Appl. Math., 1998, 58, P. 737–752.
13. Olejnik O.A., Shamaev A.S., Yosifyan G.A. Mathematical problems in elasticity and homogenization. Studies in Mathematics and its Applications. 26, North-Holland, Amsterdam etc., 1992.
14. Bunoiu R., Cardone G., Suslina T. Spectral approach to homogenization of an elliptic operator periodic in some directions. Math. Meth. Appl. Sci., 2011, 34, P. 1075–1096.
15. Cardone G., Pastukhova S.E., Zhikov V.V. Some estimates for nonlinear homogenization. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 2005, 29, P. 101–110.
16. Cardone G., Pastukhova S.E., Perugia C. Estimates in homogenization of degenerate elliptic equations by spectral method. Asympt. Anal., 2013, 81, P. 189–209.
17. Pastukhova S.E., Tikhomirov R.N. Operator Estimates in Reiterated and Locally Periodic Homogenization. Dokl. Math., 2006, 76, P. 548– 553.
18. Pastukhova S.E. Some Estimates from Homogenized Elasticity Problems. Dokl. Math., 2006, 73, P. 102–106.
19. BirmanM.S. On homogenization procedure for periodic operators near the edge of an internal gap. St. Petersburg Math. J., 2004, 15, P. 507–513.
20. Birman M.S., Suslina T.A. Homogenization of a multidimensional periodic elliptic operator in a neighbourhood of the edge of the internal gap. J. Math. Sciences, 2006, 136, P. 3682–3690.
21. Birman M.S., Suslina T.A. Homogenization with corrector term for periodic elliptic differential operators. St. Petersburg Math. J., 2006, 17, P. 897–973.
22. Birman M.S., Suslina T.A. Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1 (Rd). St. Petersburg Math. J., 2007, 18, P. 857–955.
23. Vasilevskaya E.S., Suslina T.A. Threshold approximations for a factorized selfadjoint operator family with the first and second correctors taken into account. St. Petersburg Math. J., 2012, 23, P. 275–308.
24. Zhikov V.V. On operator estimates in homogenization theory. Dokl. Math., 2005, 72, P. 534–538.
25. Zhikov V.V. Spectral method in homogenization theory. Proc. Steklov Inst. Math., 2005, 250, P. 85–94.
26. Zhikov V.V. Some estimates from homogenization theory. Dokl. Math., 2006, 73, P. 96–99.
27. Zhikov V.V., Pastukhova S.E., Tikhomirova S.V. On the homogenization of degenerate elliptic equations. Dokl. Math., 2006, 74, P. 716– 720.
28. Borisov D., Bunoiu R., Cardone G. On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition. Ann. H. Poincare´, 2010, 11, P. 1591–1627.
29. Borisov D., Bunoiu R., Cardone G. On a waveguide with an infinite number of small windows. C.R. Mathematique, 2011, 349, P. 53–56.
30. Borisov D., Bunoiu R., Cardone G. Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows. J. of Math. Sci., 2009, 176, P. 774–785.
31. Borisov D., Bunoiu R., Cardone G. Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics. Z. Ang. Math. Phys., 2013, 64 (3), P. 439–472.
32. Borisov D., Cardone G. Homogenization of the planar waveguide with frequently alternating boundary conditions. J. of Phys. A: Mathematics and General, 2009, 42, P. 365205 (21 pp.).
33. Chechkin G.A., Friedman A., Piatnitski A.L. The Boundary-value Problem in Domains with Very Rapidly Oscillating Boundary. J. Math. Anal. Appl., 1999, 231, P. 213–234.
34. Borisov D., Cardone G., Faella L., Perugia C. Uniform resolvent convergence for a strip with fast oscillating boundary. J. Diff. Eq., 2013, 255, P. 4378–4402.
35. Ladyzhenskaya O.A., Uraltseva N.N. Linear and quasilinear elliptic equations. Academic Press, New York, 1968.
36. Borisov D. Asymptotics for the solutions of elliptic systems with fast oscillating coefficients. St. Petersburg Math. J., 2009, 20, P. 175–191.
37. Reed M., Simon B. Methods of mathematical physics. Functional analysis, Academic Press, 1980.
Рецензия
Для цитирования:
. Наносистемы: физика, химия, математика. 2017;8(2):160-165. https://doi.org/10.17586/2220-8054-2017-8-2-160-165
For citation:
Cardone G. Waveguides with fast oscillating boundary. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):160-165. https://doi.org/10.17586/2220-8054-2017-8-2-160-165