Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them

https://doi.org/10.17586/2220-8054-2019-10-2-206-214

Abstract

A free impinging-jets microreactor was used for synthesizing rhabdophane-structured LaPO4 sols. The rheological behavior was investigated for the sols obtained both by reagents mixing in a microreactor, and by pouring the initial solutions together and mixing them on a magnetic stirrer. Lanthanum phosphate sols obtained by two ways are structured systems characterized by deformation behavior accompanied by shear liquefaction. Some discovered anomalies were found to be associated with flow nonequilibrium at low shear rates, which indirectly indicates stronger binding of particles in the structure of samples obtained by the microreactor synthesis.

About the Authors

O. V. Proskurina
Saint Petersburg State Institute of Technology ; Ioffe Institute
Russian Federation

Moskovsky Pr., 26, Saint Petersburg, 190013

Politekhnicheskaya Saint 26, Saint Petersburg, 194021



E. V. Sivtsov
Saint Petersburg State Institute of Technology
Russian Federation

Moskovsky Pr., 26, Saint Petersburg, 190013



M. O. Enikeeva
Saint Petersburg State Institute of Technology ; Ioffe Institute
Russian Federation

Moskovsky Pr., 26, Saint Petersburg, 190013

Politekhnicheskaya Saint 26, Saint Petersburg, 194021



A. A. Sirotkin
Saint Petersburg State Institute of Technology
Russian Federation

Moskovsky Pr., 26, Saint Petersburg, 190013



R. Sh. Abiev
Saint Petersburg State Institute of Technology
Russian Federation

Moskovsky Pr., 26, Saint Petersburg, 190013



V. V. Gusarov
Ioffe Institute
Russian Federation

Politekhnicheskaya Saint 26, Saint Petersburg, 194021



References

1. Buissette V., Moreau M., Gacoin T., Boilot J.-P., Chane-Ching J.-Y., Le Mercier T. Colloidal Synthesis of Luminescent Rhabdophane LaPO4:Ln3+ · xH2O (Ln = Ce, Tb, Eu; x∼0.7) Nanocrystals. Chem. Mater., 2004, 16, P. 3767–3773.

2. Fang Y.-P., Xu A.-W., Song R.-Q., Zhang H.-X., You L.-P., Yu J.C., Liu H.-Q. Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires. J. Am. Chem. Soc., 2003, 125(51), P. 16025–16034.

3. Glorieux B., Matecki M., Fayon F., Coutures J.P., Palau S., Douy A., Peraudeau G. Study of lanthanum orthophosphates polymorphism, in view of actinide conditioning. Journal of Nuclear Materials, 2004, 326(2-3), P. 156–162.

4. Neupane M.R., Garrett G.A., Rudin S., Andzelm J.W. Phase dependent structural and electronic properties of lanthanum orthophosphate (LaPO4). J. Phys. Condens. Matter., 2016, 28(20), P. 205501.

5. Gausse C., Szenknect S., Qin D.W., Mesbah A., Clavier N., Neumeier S., Bosbach D., Dacheux N. Determination of the Solubility of Rhabdophanes LnPO4·0.667H2O (Ln = La to Dy). Eur. J. Inorg. Chem., 2016, 28, P. 4615–4630.

6. Osipov A.V., Mezentseva L.P., Drozdova I.A., Kuchaeva S.K., Ugolkov V.L., Gusarov V.V. Preparation and thermal transformations of nanocrystals in the LaPO4-LuPO4-H2O system. Glass Physics and Chemistry, 2009, 35(4), P. 431–435.

7. Roncal-Herrero T., Rodr´ıguez-Blanco J.D., Oelkers E.H., Benning L.G. The direct precipitation of rhabdophane (REEPO4 · nH2O) nano-rods from acidic aqueous solutions at 5-100◦C. J. Nanopart. Res., 2011, 13, P. 4049–4062.

8. Boakye E.E., Hay R.S., Mogilevsky P. Spherical Rhabdophane Sols. II: Fiber Coating. J. Am. Ceram. Soc., 2007, 90(5), P. 1580–1588.

9. Mogilevsky P., Hay R.S., Boakye E.E., Keller K.A. Evolution of Texture in Rhabdophane-Derived Monazite Coatings. J. Am. Ceram. Soc., 2003, 86(10), P. 1767–1772.

10. Kenges K.M., Proskurina O.V., Danilovich D.P., Aldabergenov M.K., Gusarov V.V. Synthesis and Properties of Nanocrystalline Materials Based on LaPO4. Russian Journal of Applied Chemistry, 2017, 90(7), P. 1047–1054.

11. Sujith S.S., Arun Kumar S.L., Mangalaraja R.V., Peer Mohamed A., Ananthakumar S. Porous to dense LaPO4 sintered ceramics for advanced refractories. Ceramics International, 2014, 40, P. 15121–15129.

12. Arinicheva Y., Clavier N., Neumeier S., Podor R., Bukaemskiy A., Klinkenberg M., Roth G., Dacheux N., Bosbach D. Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics. Journal of the European Ceramic Society, 2018, 38(1), P. 227–234.

13. Colomer M.T., D´ıaz-Guillen J.A., Fuentes A. Nanometric Sr-Doped LaPO ´ 4 Monazite: Synthesis by Mechanical Milling, Characterization, and Water Incorporation on its Structure. Journal of the American Ceramic Society, 2010, 93(2), P. 393–398.

14. Sankar S., Raj A.N., Jyothi C.K., Warrier K.G.K., Padmanabhan P.V.A. Room temperature synthesis of high temperature stable lanthanum phosphate-yttria nano composite. Materials Research Bulletin, 2012, 47, P. 1835–1837.

15. Shijina K., Sankar S., Midhun M., Firozkhan M., Nair B.N., Warrier K.G., Hareesh U.N.S. Very low thermal conductivity in lanthanum phosphate-zirconia ceramic nanocomposites processed using a precipitation-peptization synthetic approach. New J. Chem., 2016, 40, P. 5333–5337.

16. Kim J., Cotte A., Deloncle R., Archambeau S., Biver C., Cano J.-P., Lahlil K., Boilot J.-P., Grelet E., Gacoin T. LaPO4 Mineral Liquid Crystalline Suspensions with Outstanding Colloidal Stability for Electro-Optical Applications. Adv. Funct. Mater., 2012, 22(23), P. 4949–4956.

17. Kim J., Martinelli L., Lahlil K., Boilot J.-P., Gacoin T., Peretti J. Optimized combination of intrinsic and form birefringence in oriented LaPO4 nanorod assemblies. Applied Physics Letters, 2014, 105(6), P. 061102.

18. Kim J., Michelin S., Hilbers M., Martinelli L., Chaudan E., Amselem G., Fradet E., Boilot J.-P., Brouwer A.M., Baroud C.N., Peretti J., Gacoin T. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography. Nature Nanotechnology, 2017, 12(9), P. 914–919.

19. Riwotzki K., Meyssamy H., Kornowski A., Haase M. Liquid-Phase Synthesis of Doped Nanoparticles: Colloids of Luminescing LaPO4:Eu and CePO4:Tb Particles with a Narrow Particle Size Distribution. J. Phys. Chem. B, 2000, 104(13), P. 2824–2828.

20. Hay R.S., Boakye E.E., Mogilevsky P. Spherical Rhabdophane Sols. I: Rheology and Particle Morphology. J. Am. Ceram. Soc., 2007, 90(5), P. 1574–1579.

21. Gavrichev K.S., Ryumin M.A., Tyurin A.V., Khoroshilov A.V., Mezentseva L.P., Osipov A.V., Ugolkov V.L., Gusarov V.V. Thermal behavior of LaPO4 · nH2O and NdPO4 · nH2O nanopowders. Journal of Thermal Analysis and Calorimetry, 2010, 102, P. 809–811.

22. Maslennikova T.P., Osipov A.V., Mezentseva L.P., Drozdova I.A., Kuchaeva S.K., Ugolkov V.L., Gusarov V.V. Synthesis, mutual solubility, and thermal behavior of nanocrystals in the LaPO4-YPO4-H2O system. Glass Physics and Chemistry, 2010, 36(3), P. 351–357.

23. Sankar S., Prajeesh G.P.V., Anupama V.N., Krishnakumar B., Hareesh P., Nair B.N., Warrier K.G., Hareesh U.N.S. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate. Journal of Hazardous Materials, 2014, 275, P. 222–229.

24. Bryukhanova K.I., Nikiforova G.E., Gavrichev K.S. Synthesis and study of anhydrous lanthanide orthophosphate (Ln = La, Pr, Nd, Sm) nanowhiskers. Nanosystems: Phys. Chem. Math., 2016, 7(3), P. 451–458.

25. Byrappa K., Murukanahally Kempaiah Devaraju, Paramesh J.R., Basavalingu B., Soga K. Hydrothermal synthesis and characterization of LaPO4 for bio-imaging phosphors. Journal of Materials Science, 2008, 43(7), P. 2229–2233.

26. Colomer M.T., Zur L., Ferrari M., Ortiz A.L. Structural-microstructural characterization and optical properties of Eu3+, Tb3+-codoped LaPO4 · nH2O and LaPO4 nanorods hydrothermally synthesized with microwaves. Ceramics International, 2018, 44, P. 11993–12001.

27. Colomer M.T., Delgado I., Ortiz A.L., Farinas J.C. Microwave-assisted Hydrothermal Synthesis of Single-crystal Nanorods of Rhabdophane-type Sr-doped LaPO4 · nH2O. J. Am. Ceram. Soc., 2014, 97(3), P. 750–758.

28. Runowski M., Grzyb T., Zep A., Krzyczkowska P., Gorecka E., Giersig M., Lis S. Eu3+ and Tb3+ doped LaPO4 nanorods, modified with a luminescent organic compound, exhibiting tunable multicolour emission. RSC Adv., 2014, 4, P. 46305–46312.

29. Stankiewicz A.I., Moulijn J.A. Process intensification: Transforming chemical engineering. Chem. Eng. Prog., 2000, 96(1), P. 22–34.

30. Marchisio D.L., Rivautella L., Barresi A.A. Design and Scale-Up of Chemical Reactors for Nanoparticle Precipitation. AIChE Journal, 2006, 52(5), P. 1877–1887.

31. Kumar R.D.V., Prasad B.L.V., Kulkarni A.A. Impinging Jet Micromixer for Flow Synthesis of Nanocrystalline MgO: Role of Mixing/Impingement Zone. Ind. Eng. Chem. Res., 2013, 52, P. 17376.

32. Abiev R.Sh., Al’myasheva O.V., Gusarov V.V., Izotova S.G. Method of producing nanopowder of cobalt ferrite and microreactor to this end. RF Patent 2625981, Bull. N 20, 20.07.2017. https://patents.google.com/patent/RU2625981C1/en.

33. Abiev R.S., Almyasheva O.V., Izotova S.G., Gusarov V.V. Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors. J. Chem. Tech. App., 2017, 1(1), P. 7–13.

34. Proskurina O.V., Nogovitsin I.V., Il’ina T.S., Danilovich D.P., Abiev R.Sh., Gusarov V.V. Formation of BiFeO3 Nanoparticles Using Impinging Jets Microreactor. Russian Journal of General Chemistry, 2018, 88(10), P. 2139–2143.

35. Johnson B.K., Prud’homme R.K. Chemical Processing and Micromixing in Confined Impinging Jets. AIChE Journal, 2003, 49(9), P. 2264–2282.

36. Ba ldyga J., Jasinska M., Orciuch W. Barium Sulphate Agglomeration in a Pipe – An Experimental Study and CFD Modeling. ´ Chemical Engineering & Technology, 2003, 26(3), P. 334–340.

37. Kenges K.M., Proskurina O.V., Danilovich D.P., Aldabergenov M.K., Gusarov V.V. Influence of the Conditions for Preparing LaPO4-Based Materials with Inclusions of the LaP3O9 Phase on Their Thermal and Mechanical Properties. Russian Journal of Applied Chemistry, 2018, 91(9), P. 1539–1548.

38. Colomer M.T. Effect of Sr2+ doping on sintering behavior, microstructural development and electrical properties of LaPO4 · nH2O nanorods prepared by dry mechanical milling. International Journal of Hydrogen Energy, 2018, 43(29), P. 13462–13474.

39. Colomer M.T., Mosa J. Thermal Evolution, Second Phases, and Sintering Behavior of LaPO4nH2O Nanorods Prepared by Two Different Chemical Synthesis Routes. Ceramics International, 2015, 41(6), P. 8080–8092.

40. Podval’naya N.V., Zakharova G.S., Liu Y. Phase Formation in the System Zn(VO3)2-HCl-VOCl2-H2O. Russian Journal of Inorganic Chemistry, 2017, 62(8), P. 1104–1110.

41. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Phys. Chem. Math., 2017, 8(5), P. 620–627.

42. Zhou G. Study of hydrothermally synthesized LiFePO4 with different morphology. Russian Journal of Applied Chemistry, 2017, 90(9), P. 1519–1523.

43. Mashentseva A.A., Kozlovskiy A.L., Turapbay K.O., Temir A.M., Seytbaev A.S., Zdorovets M.V. Determination of Optimal Conditions for Electoless Synthesis of Copper Nanotubes in the Polymer Matrix. Russian Journal of General Chemistry, 2018, 88(6), P. 1213–1218.

44. Botman S.A., Leble S.B. Electrical conductivity model for quasi-one-dimensional structures. Nanosystems: Phys. Chem. Math., 2017, 8(2), P. 231–235.

45. Herschel W.H., Bulkley R. Measurement of consistency as applied to rubber-benzene solutions. Am. Soc. Test. Proc., 1926, 26, P. 621–633.

46. Schramm G. A Practical Approach to Rheology and Rheometry. 2-nd Ed. Gebrueder HAAKE GmbH, Karlsruhe, 2000, 291 p.


Review

For citations:


Proskurina O.V., Sivtsov E.V., Enikeeva M.O., Sirotkin A.A., Abiev R.Sh., Gusarov V.V. Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):206-214. https://doi.org/10.17586/2220-8054-2019-10-2-206-214

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)