Electron microscopy of biogenic minerals: structure and sizes of uranium dioxide nanoparticles with Mn2+ impurities
https://doi.org/10.17586/2220-8054-2019-10-2-215-226
Abstract
Methodological aspects of the extraction of structural and chemical information from transmission electron microscopy (TEM) of uranium dioxide (UO2) biogenic nanoparticles are presented. Nanoparticles were formed via the bacterial reduction of water-soluble uranyl acetate with U (VI) in the presence of Mn2+ ions and cultures Shewanella oneidensis MR-1 in the medium. The particles of 1.2 – 3.5 nm in diameter and particle agglomerations were visualized in conventional TEM, high resolution TEM, scanning TEM modes. Their phase and chemical composition were investigated with electron diffraction, X-ray energy dispersive spectrometry and electron energy loss spectroscopy with high spatial resolution. Maintenance of the element balance helped to find the composition of the mixture of UO2 and Mn acetates. The interpretation of TEM data and modeling allowed to propose the mechanism for the suppression of UO2 particle growth and higher resistance to dissolution of smaller UO2 particles with adsorbed Mn acetate compared to the larger pure particles.
Keywords
About the Author
E. I. SuvorovaRussian Federation
Leninsky pr., 59, 19333 Moscow
References
1. Gadd G.M. Microbial influence on metal mobility and application for bioremediation. Geoderma, 2004, 122, P. 109–119.
2. Newsome L., Morris K., et al. The stability of microbially reduced U(IV); impact of residual electron donor and sediment ageing. Chemical Geology, 2015, 409, P. 125–135.
3. Post J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA, 1999, 96, P. 3447–3454.
4. Taffarel S.R., Rubio J. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering, 2010, 23, P. 1131–1138.
5. Williams D.B., Carter C.B. Transmission Electron Microscopy. A Textbook for Materials Science (Second Ed.), Springer, 2009.
6. Middleton S.S., Bencheikh Latmani R., et al. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 Produces Cell-Associated Reduced Chromium and Inhibits Growth. Biotechnology and Bioengineering, 2003, 83, P. 627–637.
7. Schofield E.J., Veeramani H., et al. Structure of Biogenic Uraninite Produced by Shewanella oneidensis Strain MR-1. Environ. Sci. Technol., 2008, 42, P. 7898–7904.
8. Veeramani H., Schofield E.J., et al. Effect of Mn(II) on the Structure and Reactivity of Biogenic Uraninite. Environ. Sci. Technol., 2009, 43, P. 6541–6547.
9. Veeramani H., Alessi D.S., et al. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochimica et Cosmochimica Acta, 2011, 75, P. 2512–2528.
10. Stadelmann P. JEMS (Java Electron Microscopy Software); software available at URL: http://www.jems-saas.ch/.
11. Wasserstein B. Ages of uraninites by a new method. Nature, 1954, 174, P. 1004–1005.
12. Rundle R.E., Baenziger N.C., et al. The Structures of Carbides, Nitrides and Oxides of Uranium. J. American Chemical Society, 1948, 70, P. 99–105.
13. Loopstra B.O., Taylor J.C., Waugh A.B. Neutron powder profile studies of the gamma uranium trioxide phases. Journal of Solid State Chemistry, 1977, 20, P. 9–19.
14. Siegel S. The crystal structure of trigonal U3O8. Acta Cryst., 1955, 8, P. 617–619.
15. Andresen A.F. The structure of U3O8 determined by neutron diffraction. Acta Cryst., 1958, 11, P. 612–614.
16. Cooper R.I., Willis B.T.M. Refinement of the structure of beta-(U4O9). Acta Cryst. A, 2004, 60, P. 322–325.
17. Levi G.R. The crystal structure of MnO. Mathematiche e Naturali, 1924, 57, P. 619–624.
18. Radler M.J., Cohen J.B., et al. The defect structures of Mn1−xO. Journal of Physics and Chemistry of Solids, 1992, 53, P. 141–154.
19. Min N.K., Yong-Il K., et al. New crystal structure: synthesis and characterization of hexagonal wurtzite MnO. Journal of the American Chemical Society, 2012, 134, P. 8392–8395.
20. Klein H., David J. The quality of precession electron diffraction data is higher than necessary for structure solution of unknown crystalline phases. Acta Cryst. A, 2011, 67, P. 297–302.
21. Baron V., Gutzmer J., Tellgren, R. The influence of iron substitution on the magnetic properties of hausmannite, Mn(2+)(Mn, Fe)2(3+)O4. American Mineralogist, 1998, 83, P. 786–793.
22. Norrestam R., Alpha-manganese (III) oxide – a C-type sesquioxide of orthorhombic symmetry. Golden Book of Phase Transitions, Wroclaw 2002, 1, P. 1–123.
23. Rogers D.B., Shannon R.D., Sleight A.W., Gillson J.L. Crystal chemistry of metal dioxides with rutile-related structures. Inorganic Chemistry, 1969, 8, P. 841–849.
24. Nuss J., Pfeiffer S., van Smaalen S., Jansen M. Structures of incommensurate and commensurate composite crystals Rb(x)MnO2 (x = 1:3711, 1:3636). Acta Cryst. B, 2010, 66, P. 27–33.
25. Post J.E., Heaney P.J. Neutron and synchrotron X-ray diffraction study of the structures and dehydration behaviors of ramsdellite and “groutellite”. American Mineralogist, 2004, 89, P. 969–975.
26. Fredrickson J.K., Zachara J.M., et al. Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochimica et Cosmochimica Acta, 2002, 66, P. 3247–3262.
27. Saratovsky I., Wightman P.G., et al. Manganese Oxides: Parallels between Abiotic and Biotic Structures. J. Am. Chem. Soc., 2006, 128, P. 11188–11198.
28. Bertaut E.F., Duc T.Q., et al. Crystal Structure of Manganese Acetate Tetrahydrate. Acta Cryst. B, 1974, 30, P. 2234–2236.
29. Cheng C.-Y., Wang S.L. Structure of manganese acetate dihydrate. Acta Cryst. C, 1991, 47 (8), P. 1734–1736.
30. Francis A.J., Dodge C.J., et al. XPS and XANES Studies of Uranium Reduction by Closfridium sp. Environ. Sci. Technol., 1994, 28, P. 636–639.
31. Martin J.D., Hess R.F. β-Mn(O2CMe)2: solvothermal synthesis and crystal structure of an unprecedented three-dimensional manganese (II) network. J. Chem. Soc. Commun., 1996, 21, P. 2419–2420.
32. Lanovetskiy S.V., Poylov V.Z., Stepanov A.V. Physicochemical Fundamentals of Obtaining High Purity Manganese (II) Acetate Tetrahydrate. Chemistry for Sustainable Development, 2012, 20, P. 173–179.
33. Linke W.F. Solubilities, Inorganic and Metal Organic Compounds: A Compilation of Solubility Data from the Periodical Literature, Band 2, Van Nostrand, 1965.
34. Wyckoff R.W.G. Pyrochroite. Crystal Structures 1, 2nd edition. Interscience Publishers, New York, 1963, P. 239–444.
35. Taffarel S.R., Rubio J. Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite. Minerals Engineering, 2010, 23, P. 1131–1138.
36. Buck E.C., Fortner J.A. Detecting low levels of transuranics with electron energy loss spectroscopy. Ultramicroscopy, 1997, 67, P. 69–75.
37. Rice S.B., Bales H.H., Roth J.R., Whiteside A.L. Empirical Identification of Uranium Oxides and Fluorides Using Electron Energy-loss Spectroscopy in the Transmission Electron. Microscope. Microsc. Microanal., 1999, 5, P. 437–444.
38. Vorokh A.S. Scherrer formula: estimation of error in determining small nanoparticle size. Nanosyst. Phys., Chem., Math., 2018, 9 (3), P. 364–369.
39. Burgos W.D., McDonough J.T., et al. Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochimica et Cosmochimica Acta, 2008, 72, P. 4901–4915.
Review
For citations:
Suvorova E.I. Electron microscopy of biogenic minerals: structure and sizes of uranium dioxide nanoparticles with Mn2+ impurities. Nanosystems: Physics, Chemistry, Mathematics. 2019;10(2):215-226. https://doi.org/10.17586/2220-8054-2019-10-2-215-226