Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Coupling of definitizable operators in Kreın spaces

https://doi.org/10.17586/2220-8054-2017-8-2-166-179

Abstract

Indefinite Sturm–Liouville operators defined on R are often considered as a coupling of two semibounded symmetric operators defined on R + and R , respectively. In many situations, those two semibounded symmetric operators have in a special sense good properties like a Hilbert space self-adjoint extension.

In this paper, we present an abstract approach to the coupling of two (definitizable) self-adjoint operators. We obtain a characterization for the definitizability and the regularity of the critical points. Finally we study a typical class of indefinite Sturm–Liouville problems on R.

About the Authors

V. Derkach
Dragomanov National Pedagogical University; Vasyl Stus Donetsk National University
Ukraine

Department of Mathematics; Department of Mathematics

Pirogova 9, Kiev, 01601; 600-Richchya Str 21, Vinnytsya, 21021



C. Trunk
Institut fur Mathematik, Technische Universitat Ilmenau
Germany

Postfach 100565, D-98684 Ilmenau



References

1. Azizov T.Ya., Iokhvidov I.S. Linear operators in spaces with an indefinite metric, John Wiley & Sons, 1990.

2. Bognar J. Indefinite inner product spaces, Springer, 1974.

3. Bender C.M., Brody D.C., Jones H.F. Complex extension of quantum mechanics. Phys. Rev. Lett., 2002, 89, P. 270401.

4. Bender C.M., Brody D.C., Jones H.F. Must a Hamiltonian be Hermitian? Am. J. Phys., 2003, 71, P. 1095–1102.

5. Caliceti E., Graffi S., Sjostrand J. Spectra of PT -symmetric operators and perturbation theory. J. Phys. A: Math. Gen., 2005, 38, P. 185–193.

6. G¨unther U., Stefani F., Znojil M. MHD α 2 -dynamo, squire equation and PT -symmetric interpolation between square well and harmonic oscillator. J. Math. Phys., 2005, 46, P. 063504.

7. Langer H., Tretter C. A Krein space approach to PT -symmetry. Czech. J. Phys., 2004, 54, P. 1113–1120.

8. Albeverio S., Gunther U., Kuzhel S. J-self-adjoint operators with C-symmetries: extension theory approach. J. Phys. A: Math. Theor., 2009, 42, P. 105205.

9. Caliceti E., Graffi S., Hitrik M., Sjostrand J. Quadratic PT -symmetric operators with real spectrum and similarity to self-adjoint operators. J. Phys. A: Math. Theor., 2012, 45, P. 444007.

10. Tanaka T. P T-symmetric quantum theory defined in a Krein space. J. Phys. A: Math. Gen., 2006, 39, P. L369–L376.

11. Tanaka T. General aspects of P T-symmetric and P-self-adjoint quantum theory in a Krein space. J. Phys. A: Math. Gen., 2006, 39, P. 14175–14203.

12. Langer H. Verallgemeinerte Resolventen eines J-nichtnegativen Operators mit endlichem Defekt. J. Functional Analysis, 1971, 8, P. 287– 320.

13. Jonas P. On a class of unitary operators in Krein space. Oper. Theory Adv. Appl., 1986, 17, P. 151–172.

14. Jonas P. On a class of self-adjoint operators in Krein space and their compact perturbations. Integral Equations Operator Theory, 1988, 11, P. 351–384.

15. Straus A.V. Extensions and generalized resolvents of a symmetric operator which is not densely defined. Math. USSR-Izvestija, 1970, 4, P. 179–208.

16. Calkin J.W. Abstract symmetric boundary conditions. Trans. Am. Math. Soc., 1939, 45, P. 369–442.

17. Kochubei A.N. On extentions of symmetric operators and symmetric binary relations. Matem. Zametki, 1975, 17, P. 41–48.

18. Bruk V.M. On a class of problems with the spectral parameter in the boundary conditions. Mat. Sb., 1976, 100, P. 210–216.

19. Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for operator differential equations, Kluwer Academic Publishers Group, 1991.

20. Karabash I.M. J-self-adjoint ordinary differential operators similar to self-adjoint operators. Methods Funct. Anal. Topology, 2000, 6, P. 22–49

21. Karabash I.M., Malamud M.M. Indefinite Sturm-Liouville operators with finite zone potentials. Operators and Matrices, 2007, 1, P. 301– 368.

22. Karabash I.M., Kostenko A., Malamud M.M. The similarity problem for J-nonnegative Sturm-Liouville operators. J. Differential Equations, 2009, 246, P. 964–997.

23. Kostenko A. The similarity problem for indefinite Sturm-Liouville operators and the HELP inequality. Adv. Math., 2013, 246, P. 368–413.

24. Behrndt J. On the spectral theory of singular indefinite Sturm-Liouville operators. J. Math. Anal. Appl., 2007, 334, P. 1439–1449.

25. Veselic K. On spectral properties of a class of ´J-self-adjoint operators I. Glasnik Mat. Ser., 1972, 7, P. 229–248.

26. Veselic K. On spectral properties of a class of ´J-self-adjoint operators II. Glasnik Mat. Ser., 1972, 7, P. 249–254.

27. Jonas P. Regularity criteria for critical points of definitizable operators. Operator Theory: Advances and Applications, 1984, 14, P. 179–195.

28. Curgus B., Derkach V. Partially fundamentally reducible operators in Kreın spaces. Integral Equations Operator Theory, 2015, 82, P. 469–518.

29. Curgus B., Langer H. A Kreın space approach to symmetric ordinary differential operators with an indefinite weight function. J. Differential Equations, 1989, 79, P. 31–61.

30. Kac I.S., Kre˘ın M.G. R-functions–analytic functions mapping the upper halfplane into itself. Amer. Math. Soc. Transl. Ser., 1974, 103, P. 1–18.

31. Donoghue W.F. Monotone matrix functions and analytic continuation. Die Grundlehren der mathematischen Wissenschaften, Band 207, Springer-Verlag, 1974.

32. Langer H. Spectral functions of definitizable operators in Kre˘ın spaces. In Functional analysis: Lecture Notes in Math., Springer, 1982, 948, P. 1–46.

33. Langer H. Spektraltheorie linearer Operatoren in J-Raumen und einige Anwendungen auf die Schar L(λ) = λ 2 I + λB + C. Habilitationsschrift, Technische Universitat Dresden, 1965.

34. Azizov T. Ya., Jonas P., Trunk C. Spectral points of type π+ and π− of selfadjoint operators in Kreın spaces. J. Funct. Anal., 2005, 226, P. 114–137.

35. Jonas P. On Locally Definite Operators in Kreın Spaces. In Spectral Theory and its Applications, Ion Colojoara Anniversary Volume, Theta, Bucharest, 2003, P. 95–127.

36. Lancaster P., Markus A.S., Matsaev V.I. Definitizable operators and quasihyperbolic operator polynomials. J. Funct. Anal., 1995, 131, P. 1–28.

37. Langer H., Markus A.S., Matsaev V.I. Locally definite operators in indefinite inner product spaces. Math. Ann., 1997, 308, P. 405–424.

38. Ando T. Linear Operators in Krein Spaces, Lecture Notes, Hokkaido University, Sapporo, 1979.

39. Trunk C. Locally definitizable operators: The local structure of the spectrum. In: Operator Theory, D. Alpay (Ed.), Springer, 2015, P. 241–259.

40. Behrndt J. Finite rank perturbations of locally definitizable self-adjoint operators in Krein spaces. J. Operator Theory, 2007, 58, P. 415–440.

41. Jonas P., Langer H. Compact perturbations of definitizable operators. J. Operator Theory, 1979, 2, P. 63–77.

42. Karabash I., Trunk C. Spectral properties of singular Sturm-Liouville operators. Proc. R. Soc. Edinb. Sect. A, 2009, 139, P. 483–503.

43. Akhiezer N.I., Glazman I.M. Theory of Linear Operators in Hilbert Space, Dover Publications, 1993.

44. Derkach V.A., Malamud M.M. Generalized resolvents and the boundary value problems for hermitian operators with gaps. J. Funct. Anal., 1991, 95, P. 1–95.

45. Derkach V.A. On Weyl function and generalized resolvents of a Hermitian operator in a Kreın space. Integral Equations Operator Theory, 1995, 23, P. 387–415.

46. Kreın M.G., Langer H. Uber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren in Raume Πκ zusammenhangen, Teil I: Einige Funktionenklassen und ihre Darstellungen. Math. Nachr., 1977, 77, P. 187–236.

47. Derkach V.A., Hassi S., Malamud M.M., de Snoo H.S.V. Generalized resolvents of symmetric operators and admissibility. Methods Funct. Anal. Topol., 2000, 6, P. 24–55.


Review

For citations:


Derkach V., Trunk C. Coupling of definitizable operators in Kreın spaces. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):166-179. https://doi.org/10.17586/2220-8054-2017-8-2-166-179

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)