Quasi-semidefinite eigenvalue problem and applications
https://doi.org/10.17586/2220-8054-2017-8-2-180-187
Abstract
In this note, we study the eigenvalue problem for a class of block operator matrix pairs. Our study is motivated by an analysis of abstract differential algebraic equations. Such problems frequently appear in the study of complex systems, e.g. differential equations posed on metric graphs, in mixed variational formulation.
About the Authors
L. GrubisicCroatia
Department of Mathematics, Faculty of Science
Bijenicka 30, 10000 Zagreb
J. Tambaca
Croatia
Department of Mathematics, Faculty of Science
Bijenicka 30, 10000 Zagreb
References
1. Kunkel P., Mehrmann V. Differential-algebraic equations. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zurich, 2006.
2. Altmann R., Levajkovic T., Mena H. Operator differential-algebraic equations with noise arising in fluid dynamics. Monatshefte fur Mathematik, 2016, P. 1–40.
3. Emmrich E., Mehrmann V. Operator differential-algebraic equations arising in fluid dynamics. Comput. Methods Appl. Math., 2013, 13 (4), P. 443–470.
4. Tretter C. Spectral theory of block operator matrices and applications. Imperial College Press, London, 2008.
5. Grubisic L., Kostrykin V., Makarov K.A., Veselic K. Representation theorems for indefinite quadratic forms revisited. ´Mathematika, 2013, 59 (1), P. 169–189.
6. Grubisic L., Kostrykin V., Makarov K.A., Veselic K. The Tan 2Θ theorem for indefinite quadratic forms. J. Spectr. Theory, 2013, 3 (1), P. 83–100.
7. Tartar L. An introduction to Navier-Stokes equation and oceanography, 1 of Lecture Notes of the Unione Matematica Italiana. SpringerVerlag, Berlin; UMI, Bologna, 2006.
8. Kato T. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.
9. Veselic I., Veselic K. Spectral gap estimates for some block matrices. Oper. Matrices, 2015, 9 (2), P. 241–275.
10. Cliffe K.A., Garratt T.J., Spence A. Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations. Adv. Comput. Math., 1993, 1 (3–4), P. 337–356.
11. Stykel T. Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal., 2008, 30, P. 187–202.
12. Cliffe K.A., Garratt T.J., Spence A. Eigenvalues of block matrices arising from problems in fluid mechanics. SIAM J. Matrix Anal. Appl., 1994, 15 (4), P. 1310–1318.
13. Markus A.S., Macaev V.I. On the spectral theory of holomorphic operator-valued functions in Hilbert space. Funkcional. Anal. i Prilozen. 1975, 9 (1), P. 76–77.
14. Mennicken R., Moller M. Non-self-adjoint boundary eigenvalue problems. In North-Holland Mathematics Studies, 192, North-Holland Publishing Co., Amsterdam, 2003.
15. Nakic I. On the correspondence between spectra of the operator pencil ´A − λB and of the operator B −1A. Glas. Mat. Ser. III, 2016, 51 (71), P. 197–221.
16. Jurak M., Tambaca J. Linear curved rod model. General curve. Math. Models Methods Appl. Sci., 2001, 11 (7), P. 1237–1252.
17. Canic S., Tamba ´ ca J. Cardiovascular stents as PDE nets: 1D vs. 3D. IMA J. Appl. Math., 2012, 77 (6), P. 748–770.
18. Grubisic L., Ivekovic J., Tambaca J., Zugec B. Mixed formulation of the equilibrium problem for elastic stents. Submitted to Rad HAZU, 2017, URL: http://arxiv.org/abs/1703.05074.
19. Ivekovic J. Numerical method for the model of linearized stents. Diploma thesis, Department of Mathematics, Faculty of Science, University of Zagreb, 2015.
Review
For citations:
Grubisic L., Tambaca J. Quasi-semidefinite eigenvalue problem and applications. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):180-187. https://doi.org/10.17586/2220-8054-2017-8-2-180-187