Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Zigzag chain model and its spectrum

https://doi.org/10.17586/2220-8054-2017-8-2-188-193

Abstract

This work describes the development of a model using a zigzag chain of weakly-coupled ball resonators with Neumann boundary conditions. The chain is assumed to be constructed of identical resonators connected through point-like apertures. The connecting points are described by their delta-coupling with a constant intensity. The model is based on the theory of self-adjoint extensions of symmetrical operators. Due to effectively one-dimensional joints, the 3D problem can be solved with assistance from the transfer matrix approach. This allows us to study the spectrum of the physical system. In particular, it is proven that the discrete spectrum of direct zigzag chain is empty while bending deformation leads to the appearance of non-empty discrete spectrum. In addition, the continuous spectrum has band structure. With the help of asymptotic study, we obtain the dependence of the spectrum structure on the geometrical and physical parameters of the system: zigzag angle, bend angle and coupling intensity.

About the Author

A. S. Melikhova
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Duclos P., Exner P., Turek O. On the spectrum of a bent chain graph. J. Phys. A: Math. Theor., 2008, 41, P. 415206.

2. Popov I. Yu., Smirnov P. I. Spectral problem for branching chain quantum graph. Phys. Lett. A, 2013, 377(6), P. 439–442.

3. Popov I. Yu., Skorynina A. N., Blinova I. V. On the existence of point spectrum for branching strips quantum graph. J. Math. Phys., 2014, 55, P. 033504.

4. Grishanov E. N., Eremin D. A., Ivanov D. A., Popov I. Yu. Periodic chain of disks in a magnetic field: bulk states and edge states. Nanosystems: Phys. Chem. Math., 2015, 6(5), P. 637–643.

5. Blinova I. V., Melikhova A. S., Popov I. Yu. Periodic chain of resonators: gap control and the system geometry. Journal of Physics: Conference Series, 2016, 735, P. 012062.

6. Eremin D. A., Ivanov D. A., Popov I. Yu. Electron energy spectrum for a bent chain of nanospheres. Eur. Phys. J. B, 2014, 87(8), P. 181.

7. Melikhova A. S., Popov I. Yu. Spectral problem for solvable model of bent nano peapod. Applicable Analysis, 2017, 96(2), P. 215–224.

8. Melikhova A. S. Estimates for numbers of negative eigenvalues of Laplacian for Y-type weakly coupled chain of ball resonators. Mathematical Results in Quantum Mechanics. Proceedings of the QMath12 Conference, 2014, P. 325-330.

9. Melikhova A. S., Popov I. Yu. Bent and branched chains of nanoresonators. Journal of Physics: Conference Series, 2014, 541, P. 012061.

10. Heebner J. E., Boyd R. W., and Park Q.-H. SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides. J. Opt. Soc. Am. B, 2002, 19, P. 722–731.

11. Popov I. Yu., Trifanov A. I. and Trifanova E. S. Coupled dielectric waveguides with photonic crystal properties. Comput. Math. Math. Phys, 2010, 50(11), P. 1830–1836.

12. Lenz G., Eggleton B. J., Madsen C. K., and Slusher L. E. Optical Delay Lines Based on Optical Filters. IEEE J. Quantum Electron, 2001, 37(4), P. 525–532.

13. Wang Y., Zhang H. J., Lu L., Stubbs L. P., Wong C. C., Lin J. Designed Functional Systems from Peapod-like Co@Carbon to Co3O4@Carbon Nanocomposites. ACS Nano, 2010, 4(8), P. 4753–4761.

14. Yang Y., Li L., Li W. Plasmon Absorption of Au-in-CoAl2O4 Linear Nanopeapod Chains. J. Phys. Chem. C, 2013, 117(27), P. 14142– 14148.

15. Enyashin A. N., Ivanovskii A. L. Nanotubular composites: modeling of capillary filling of nanotubes of disulfide of molybdenum by molecules of TiCl4. Nanosystems: Phys. Chem. Math, 2010, 1(1), P. 63–71.

16. Krivanek O. L., Dellby N.,.Murfitt M. F, Chisholm M. F., Pennycook T. J., Suenaga K. and Nicolosi V. Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy, 2010, 110(8), P. 935–945.

17. Abou-Hamad E., Kim Yo., Talyzin A. V., Goze-Bac Ch., Luzzi D. E., Rubio A., Wagberg T. Hydrogenation of C60 in Peapods: Physical Chemistry in Nano Vessels. J. Phys. Chem. C, 2009, 113, P. 8583–8587.

18. Boyd R. W. and Heebner J. E. Sensitive disk-resonator photonic biosensor. Appl. Opt., 2001, 40(31), P. 5742–5747.

19. Albeverio S., Gestesy F., Hoegh-Krohn R., et al. Solvable models in quantum mechanics. Springer-Verlag, Berlin, 1988.

20. Popov I. Y., Kurasov P. A., Naboko S. N., Kiselev A. A., Ryzhkov A. E., Yafyasov A. M., Miroshnichenko G. P., Kareshina E. Yu., Kruglov V. I., Pankratova T. F., Popov A. I. A distinguished mathematical physicist Boris S. Pavlov. Nanosystems: Phys., Chem., Math., 2016, 7(5), P. 782–788.

21. Popov I. Yu. The resonator with narrow slit and the model based on the operator extensions theory. J. Math. Phys., 1992, 33(11), P. 3794–3801.

22. Popov I. Yu. 2012 Operator extensions theory model for electromagnetic field-electron interaction. J. Math. Phys., 2012, 53(6), P. 063505.

23. Popov I. Yu. Extensions theory and localization of resonances for domains of trap type. Mat. Sbornik, 1990, 181(10), P. 1366–1390.

24. Popov I. Yu. Model of point-like window for electromagnetic Helmholtz resonator. Zeitschrift Anal. Anwend., 2013, 32, P. 155–162.

25. Behrndt J., Langer M., Lotoreichik V. Boundary triples for Schrdinger operators with singular interactions on hypersurfaces. Nanosystems: Phys., Chem., Math., 2016, 7(2), P. 290–302.

26. Boitsev A. A., Neidhardt H., Popov I. Yu. Dirac operator coupled to bosons. Nanosystems: Phys., Chem., Math., 2016, 7(2), P. 332–339.

27. Geyler V. A., Pavlov B. S., Popov I. Yu. Spectral properties of a charged particle in antidot array: A limiting case of quantum billiard. J. Math. Phys., 1996, 37(10), P. 5171–5194.

28. Berndt J., Malamud M., Neidhardt H. Scattering matrices and Weyl functions. Proc. London Math. Soc., 2008, 97(3), P. 568–598.

29. Birman M. Sh., Solomjak M. Z. Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel Publishing Company, Dordrecht, 1987, 301 pp.

30. Anikevich A. S. Negative eigenvalues of the Y-type chain of weakly coupled ball resonators. Nanosystems: Phys. Chem. Math., 2013, 4(4), P. 545–549.


Review

For citations:


Melikhova A.S. Zigzag chain model and its spectrum. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):188-193. https://doi.org/10.17586/2220-8054-2017-8-2-188-193

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)