Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Model of tunnelling through double quantum layer in a magnetic field

https://doi.org/10.17586/2220-8054-2017-8-2-194-201

Abstract

Several explicitly solvable models are constructed for electron tunneling in a system of double two-dimensional periodic arrays of quantum dots with two laterally coupled leads in a homogeneous magnetic field are constructed. The theory of self-adjoint extensions of symmetric operators is used for modelling of electron transport. Dependencies of the transmission coefficient on the magnetic field, the energy of electron and the distance between layers are investigated. The results are compared with those of tunnelling through the corresponding single-layer periodic arrays.

About the Authors

D. L. Meynster
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



I. Y. Popov
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



A I. Popov
ITMO University
Russian Federation

Kronverkskiy, 49, St. Petersburg, 197101



References

1. Hofstadter D.R. Energy levels and wavefunctions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev., 1976, B14, P. 2239–2249.

2. Gonzalez A., Capote R. Vertical magneto-tunneling through a quantum dot and the density of states of small electronic systems. Physica E, 2001, 10(4), P. 528–534.

3. Brunner R., Meisels R., et al. Magneto-transport in open quantum dot arrays at the transition from low to high magnetic fields: regularity and chaos. Int. J. Mod. Phys., 2007, B21, P. 1288–1296.

4. Roco M.C., Mirkin C.A., Hersam M.C. Nanotechnology Research Directions for Societal Needs in 2020. Retrospective and Outlook. Berlin, Springer, 2010.

5. Bloch I., Dalibard J., Zwerger W. Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80, P. 885–964. DOI: 10.1103/RevModPhys.80.885.

6. Geyler V.A. The two-dimensional Schrodinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range ¨ potentials. St. Petersburg Mathematical Journal, 1992, 3(3), P. 489–532.

7. Mantile A. A linearized model of quantum transport in the asymptotic regime of quantum wells. Nanosystems: Phys. Chem. Math., 2015, 6, P. 100–112.

8. Dabrowski L., Grosse H. On nonlocal point interactions in one, two, and three dimensions. J. Math. Phys., 1985, 26, P. 2777–2780.

9. Albeverio S., Kurasov P. Singular perturbations of differential operators. Solvable Schrodinger type operators London Mathematical Society Lecture Notes, 2005, 271 pp.

10. Geyler V.A., Pavlov B.S., Popov I.Yu. One-particle spectral problem for superlattice with a constant magnetic field. Atti Sem. Mat. Fis. Univ. Modena., 1998, 46, P. 79–124.

11. Pavlov B.S. Extensions theory and explicitly-solvable models. Uspekhi Mat. Nauk, 1987, 42(6), P. 99–131.

12. Geyler V.A., Pavlov B.S., Popov I.Yu. Spectral properties of a charged particle in antidot array: A limiting case of quantum billiard. J. Math. Phys., 1996, 37(10), P. 5171–5194.

13. Popov I.Y., Kurasov P.A., et al. A distinguished mathematical physicist Boris S. Pavlov. Nanosystems: Phys. Chem. Math., 2016, 7(5), P. 782–788.

14. Eisenstein J.P., et al. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett., 1992, 68(9), P. 1383–1386.

15. Geyler V.A., Popov I.Yu. Solvable model of a double quantum electron layer in a magnetic field. Proc. Royal Soc. London, 1998, A. 454, P. 697–705. doi: 10.1098/rspa.1998.0181.

16. Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev., 1957, 49(24), P. 17177–17184.

17. Pavlov B.S., Yafyasov A.M. Resonance scattering across the superlattice barrier and the dimensional quantization. Nanosystems: Phys. Chem. Math., 2016, 7(5), P. 816–834.

18. Popov I.Yu., Osipov S.A. Model of tunnelling through periodic array of quantum dots in a magnetic field. Chinese Phys., 2012, B21, P. 117306.

19. Eremin D.A., Grishanov E.N., et al. An explicitly solvable model for tunneling through a quantum dots array in a magnetic field. Chinese J. Phys., 2014, 52(24), P. 1100–1109.

20. Meynster D., Popov A., Popov I. Model of tunnelling through periodic array of quantum dots. ITM Web of Conferences, 2017, 9, P. 01008/1-5.

21. Bateman H., Erdelyi A. Higher Transcendental Functions (vol. 1). McGraw-Hill, New York, 1953.

22. Geyler V.A., Popov I.Yu. The spectrum of a magneto-Bloch electron in a periodic array of quantum dots: explicitly solvable model. Z. Phys. B, 1994, 93, P. 437–439.

23. Geerinckx F., Peeters F.M., Devreese J.T. Effect of the confining potential on the magneto optical spectrum of a quantum dot. J. Appl. Phys., 1990, 68(7), P. 3435–3438.

24. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics: Second Edition. AMS Chelsea Publishing, Providence, R.I., 2005.

25. Geyler V.A., Popov I.Yu. Group-theoretical analysis of lattice Hamiltonian with a magnetic field. Phys. Lett., 1995, A, 201, P. 359–364.

26. Geyler V.A., Popov I.Yu. Periodic array of quantum dots in a magnetic field: irrational flux, honeycomb lattice. Z. Phys., 1995, B98, P. 473–477.

27. Geyler V.A., Popov I.Yu. Ballistic transport in nanostructures: explicitly solvable model. Theor. Math. Phys., 1996, 107, P. 427–434.

28. Geyler V.A., Popov I.Yu. Resonant tunnelling in zero-dimensional systems: Explicitly solvable model. Phys. Lett. A, 1994, 187, P. 410–412.

29. Geyler V.A., Popov I.Yu., Popov A.V., Ovechkina A.A. Fractal spectrum of periodic quantum system in a magnetic field. Chaos, Solitons, and Fractals, 2000, 11(1-3), P. 281–288.

30. Nemec N., Cuniberti G. Hofstadter butterflies of bilayer graphene. Phys. Rev. B Rapid Comm., 2007, 75, 201404/1-4 (R).

31. Popov I.Yu., Grishanov E.N. Spectral properties of multi-layered graphene in a magnetic field. Superlatt. Microstruct, 2015, 86, P. 68–72.

32. Popov I.Yu., Grishanov E.N. Electron spectrum for aligned SWNT array in a magnetic field. Superlatt. Microstruct., 2016, 100, P. 1276– 1282.

33. Grishanov E.N., Popov I.Y. Computer simulation of periodic nanostructures. Nanosystems: Phys. Chem. Math., 2016, 7(5), P. 865–868.

34. Albrecht C., Smet J.H., et al. Evidence of Hofstadter’s fractal energy spectrum in the quantized Hall conductance. Phys. Rev. Lett., 2001, 86, P. 147–150.

35. Wang Z.F., Liu F., Chou M.Y. Fractal Landau-level spectra in twisted bilayer graphene. Nano Lett., 2012, 12, P. 3833–3838.


Review

For citations:


Meynster D.L., Popov I.Y., Popov A.I. Model of tunnelling through double quantum layer in a magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):194-201. https://doi.org/10.17586/2220-8054-2017-8-2-194-201

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)