Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Unique continuation principles and their absence for Schrodinger eigenfunctions on combinatorial and quantum graphs and in continuum space

https://doi.org/10.17586/2220-8054-2017-8-2-216-230

Abstract

For the analysis of the Schrodinger and related equations it is of central importance whether a unique continuation principle (UCP) holds or not. In continuum Euclidean space, quantitative forms of unique continuation imply Wegner estimates and regularity properties of the integrated density of states (IDS) of Schrodinger operators with random potentials. For discrete Schr odinger equations on the lattice, only a weak analog of the UCP holds, but it is sufficient to guarantee the continuity of the IDS. For other combinatorial graphs, this is no longer true. Similarly, for quantum graphs the UCP does not hold in general and consequently, the IDS does not need to be continuous.

About the Authors

N. Peyerimhoff
Durham University
United Kingdom

Department of Mathematical Sciences



M. Taufer
Technische Universitat Dortmund
Germany

Fakultat fur Mathematik



I. Veselic
Technische Universitat Dortmund
Germany

Fakultat fur Mathematik



References

1. Bourgain J. and Kenig C. E. On localization in the continuous Anderson-Bernoulli model in higher dimension. Invent. Math., 2005, 161(2), P. 389–426.

2. Carleman T. Sur un probleme d’unicite pour les systemes d’equations aux derivees partielles a deux variables independantes. ´Ark. Mat. Astron. Fysik, 1939, 26B(17), P. 1–9.

3. Kenig C.E., Ruiz A., and Sogge C.D. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J., 1987, 55, P. 329–347.

4. Koch H. and Tataru D. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Comm. Pure Appl. Math., 2001, 54(3), P. 339–360.

5. Wolff T. H. Note on counterexamples in strong unique continuation problems. Proc. Amer. Math. Soc., 1992, 114(2), P. 351–356.

6. Wolff T. H. Recent work on sharp estimates in second order elliptic unique continuation problems. In Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), Stud. Adv. Math., pages 99–128. CRC, Boca Raton, FL, 1995.

7. Escauriaza L., Kenig C. E., Ponce G. and Vega L. Uniqueness properties of solutions to Schrodinger equations. Bull. Amer. Math. Soc. (N.S.), 2012, 49(3), P. 415–442.

8. Jerison D. and Kenig C.E. Unique continuation and absence of positive eigenvalues for Schrodinger operators. Ann. of Math. (2), 1985, 121(3), P. 463–494. With an appendix by E. M. Stein.

9. Donnelly H. and Fefferman C. Nodal sets of eigenfunctions on Riemannian manifolds. Invent. math., 1988, 93(1), P. 161–183.

10. Bakri L. Carleman estimates for the Schrodinger operator. Applications to quantitative uniqueness. ¨ Commun. Part. Diff. Eq., 2013, 38(1), P. 69–91.

11. Germinet F. and Klein A. A comprehensive proof of localization for continuous Anderson models with singular random potentials. J. Eur. Math. Soc., 2013, 15(1), P. 53–143.

12. Stollmann P. Caught by disorder: Bound States in Random Media, volume 20 of Progress in Mathematical Physics. Birkhauser, 2001.

13. Carmona R.,Klein A., and Martinelli F. Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys., 1987, 108, P. 41–66.

14. Bourgain J. and Klein A. Bounds on the density of states for Schrodinger operators. Invent. Math., 2013, 194(1), P. 41–72

15. Craig W. and Simon B. Subharmonicity of the Lyaponov index. Duke Math. J., 1983, 50(2), P. 551–560.

16. Meshkov V.Z. On the possible rate of decay at infinity of solutions of second order partial differential equations. Math. USSR Sb., 1992, 72(2), P. 343–361.

17. Rojas-Molina C. and Veselic I. Scale-free unique continuation estimates and application to random Schrodinger operators. Commun. Math. Phys., 2013, 320(1), P. 245–274.

18. Germinet F., Muller P., and Rojas-Molina C. Ergodicity and dynamical localization for Delone-Anderson operators. Rev. Math. Phys., 2015, 27(9), P. 1550020,36.

19. Combes J.-M., Hislop P. D., and Klopp F. Holder continuity of the integrated density of states for some random operators at all energies. Int. Math. Res. Not., 2003, 4, P. 179–209.

20. Combes J.-M., Hislop P. D., and Klopp F. An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrodinger operators. ¨ Duke Math. J., 2007, 140(3), P. 469–498.

21. Klein A. Unique continuation principle for spectral projections of Schrodinger operators and optimal Wegner estimates for non-ergodic random Schrodinger operators. Commun. Math. Phys., 2013, 323(3), P. 1229–1246.

22. Nakic I., Taufer M., Tautenhahn M., and Veselic I. Scale-free uncertainty principles and Wegner estimates for random breather ´potentials. C. R. Math., 2015, 353(10), P. 919–923.

23. Nakic I., Taufer M., Tautenhahn M., and Veselic I. Scale-free unique continuation principle, eigenvalue lifting and Wegnerestimates for random Schrodinger operators. arXiv:1609.01953 [math.AP], 2016.

24. Taufer M. and VeselicI. Conditional Wegner estimate for the standard random breather potential. ´ J. Stat. Phys., 2015, 161(4), P. 902–914. arXiv:1509.03507.

25. Shirley C. Decorrelation estimates for some continuous and discrete random Schrodinger operators in dimension one, without covering condition. 2015. https://hal.archives-ouvertes.fr/hal-01149320

26. Le Rousseau J. and Lebeau G. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM Contr. Optim. Ca., 2012, 18(3), P. 712–747.

27. Delyon F. and Souillard B. Remark on the continuity of the density of states of ergodic finite-difference operators. Commun. Math. Phys., 1984, 94, P. 289–291.

28. Wegner F. Bounds on the density of states in disordered systems. Z. Phys. B, 1981, 44, P. 9–15.

29. Craig W. and Simon B. Log Holder continuity of the integrated density of states for stochastic Jacobi matrices. Commun. Math. Phys., 1983, 90, P. 207–218.

30. Veselic I. Spectral analysis of percolation Hamiltonians. ´ Math. Ann., 2005, 331(4), P. 841–865. http://arXiv.org/math-ph/0405006.

31. Chayes J. T., Chayes L., Franz J. R., Sethna J. P., and Trugman S. A. On the density of states for the quantum percolation problem. J. Phys. A, 1986, 19(18), P. L1173–L1177.

32. Antunovic T. and Veseli ´ c I. Spectral asymptotics of percolation Hamiltonians on amenable Cayley graphs. Volume 186 of ´Operator Theory: Advances and Applications, pages 1–29. Birkhauser, 2008. http://arxiv.org/abs/0707.4292.

33. Lenz D. and Veselic I. Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence. ´ Math. Z., 2009, 263(4), P. 813–835.

34. Schumacher Ch., Schwarzenberger F., and VeselicI. A Glivenko–Cantelli theorem for almost additive functions on lattices. Stoch. Proc. Appl, 2016, 127(1), P. 179–208. https://arxiv.org/abs/1606.07664.

35. Chaudhury R.P., Chu C.W., Galstyan E., Galstyan E., Lorenz B., Sun Y.Y., Wang Y.Q., and Yen F. Magnetic phase diagrams of the kagom?? staircase compound. Physica B: Condensed Matter, 2008, 403(5-9), P. 1487–1489. Proceedings of the International Conference on Strongly Correlated Electron Systems.

36. Lawes G., Harris A.B., Kimura T., Rogado N., Cava R.J., Aharony A., Entin-Wohlman O., Yildirim T., Kenzelmann M., Broholm C., and Ramirez A.P. Magnetically driven ferroelectric order in ni3v2o8. Phys. Rev. Lett., 2005, 95(Aug), P. 087205.

37. Helffer B., Kerdelhue P., and Royo-Letelier J. Chambers’s formula for the graphene and the Hou model with kagome periodicity ´ and applications. Ann. Henri Poincare´, 2016, 17(4), P. 795–818.

38. Hou J.M. Light-induced hofstadter’s butterfly spectrum of ultracold atoms on the two-dimensional kagome lattice. Chinese Physics Letters, 2009, 26(12), P. 123701.

39. Kerdelhue P. and Royo-Letelier J. On the low lying spectrum of the magnetic Schr ´ odinger operator with kagome periodicity. Rev. Math. Phys., 2014, 26(10), P. 1450020,46.

40. Lenz D., Peyerimhoff N., Post O., and Veselic I. Continuity of the integrated density of states on random length metric graphs. ´Math. Phys. Anal. Geom., 2009, 12(3), P. 219–254.

41. Baues O. and Peyerimhoff N. Geodesics in non-positively curved plane tessellations. Adv. Geom., 2006, 6(2), P. 243–263.

42. Klassert S., Lenz D., Peyerimhoff N., and Stollmann P. Elliptic operators on planar graphs: unique continuation for eigenfunctions and nonpositive curvature. Proc. Amer. Math. Soc., 2006, 134(5), P. 1549–1559.

43. Keller M. Curvature, geometry and spectral properties of planar graphs. Discrete Computational. Geom., 2011, 46(3), P. 500–525.

44. Keller M., Peyerimhoff N., and Pogorzelski F. Sectional curvature of polygonal complexes with planar substructures. arXiv:1407.4024 [math.MG], 2015.

45. Cattaneo C. The spectrum of the continuous Laplacian on a graph. Monatsh. Math., 1997, 124(3), P. 215–235.

46. Pankrashkin K. Spectra of Schrodinger operators on equilateral quantum graphs. ¨ Lett. Math. Phys., 2006, 77(2), P. 139–154.

47. Post O. Equilateral quantum graphs and boundary triples. In Analysis on graphs and its applications, volume 77 of Proc. Sympos. Pure Math., pages 469–490. Amer. Math. Soc., Providence, RI, 2008.

48. Lledo F. and Post O. Eigenvalue bracketing for discrete and metric graphs. ´ J. Math. Anal. Appl., 2008, 348(2), P. 806–833.

49. J. von Below. A characteristic equation associated to an eigenvalue problem on c 2 -networks. Linear Algebra Appl., 1985, 71, P. 309–325.

50. Klopp F. and Pankrashkin K. Localization on quantum graphs with random edge lengths. Lett. Math. Phys., 2009, 87(1-2), P. 99–114.


Review

For citations:


Peyerimhoff N., Taufer M., Veselic I. Unique continuation principles and their absence for Schrodinger eigenfunctions on combinatorial and quantum graphs and in continuum space. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):216-230. https://doi.org/10.17586/2220-8054-2017-8-2-216-230

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)