Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Generation of laser radiation by nanostructured solid active elements with selective optical nanoresonators formed in nanoporous aluminum oxide films

https://doi.org/10.17586/2220-8054-2017-8-6-793-797

Аннотация

The generation of laser radiation by a nanostructured solid active element with natural selective optical nanoresonator formed in a nanoporous aluminum oxide film activated with rhodamine 6G has been obtained for the first time. The lasing is characterized by high-quality radiation with the absence of a spontaneous component. Chemical deposition of noble metals leads to the formation of internal nanoresonator into the porous structure. This reduces generation threshold more than two fold.

Об авторе

G. A. Lyubas
Vorozhtsov Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences
Россия

Novosibirsk, 630090



Список литературы

1. Zemskii V.I., Kolesnikov Yu.L., and Meshkovskii I.K. Physics and Technology of Pulsed Dye Lasers. SPbGU ITMO, St. Petersburg, 2005, 176 p. [in Russian].

2. Zhang W., Yao J., Zhao Y.S. Organic Micro/Nanoscale Lasers. Acc. Chem. Res., 2016, 49(9), P. 1691–1700.

3. Li Y.J., Yan Y., Zhao Y.S., Yao J. Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics. Adv. Mater., 2016, 28, P. 1319–1326.

4. Bol’shchikov F.A., Garibin E.A., Gusev P.E., Demidenko A.A., Kruglova M.V., Krutov M.A., Lyapin A.A., Mironov I.A., Osiko V.V., Reitirov V.M. Ryabochkina P.A., Sakharov N.V., Smirnov A.N., Ushakov S.N., and Fedorov P.P. Nanostructured Tm:CaF2 ceramics: potential gain media for two micron lasers. Quantum Electron., 2011, 41, P. 193.

5. Shin H.W., Cho S.Y., Choi K.H., and Kim Y.R. Directional random lasing in dye-TiO2 doped polymer nanowire array embedded in porous alumina membrane. Appl. Phys. Lett., 2006, 88, P. 263112.

6. Costel A., Garcia-Moreno I., del Agua D., García O., and Sastre R. Highlyphotostable solid-state dye lasers based on silicon-modified organic matrices. J. Appl. Phys., 2007, 101(7), P. 731–742.

7. Marinho S.J., Jesus L.M., Barbosa L.B., Ardila D.R., Alencar M., Rodrigues J.J. Bi-chromatic random laser from alumina porous ceramic infiltrated with rhodamine B. Jr. Laser Phys. Lett., 2015, 12, P. 055801–055805.

8. Moadhen A., Elhouichet H., Nosova L., Oueslati M. Rhodamine B absorbed by anodic porous alumina: Stokes and anti-Stokes luminescence study. J. Lumin., 2007, 126(2), P. 789–794.

9. Li Z., Huang K. Optical properties of alumina membranes prepared by anodic oxidation process. J. Lumin., 2007, 127(2), P. 435–440.

10. Zhang Z.L., Zheng H.R., Dong J., Yan X.Q., Sun Y., Xu H.X. Surface enhanced fluorescence by porous alumina with nanohole arrays. Sci.China, Ser. G., 2012, 55(5), P. 767–771.

11. Ibrayev N.Kh., Zeinidenov A.K., Aimukhanov A.K. and Napolskii K.S. Stimulated emission from aluminium anode oxide films doped with rhodamine 6G. Quantum Electron., 2015, 45, P. 663.

12. Lyubas G.A. Generation of laser radiation by nanostructured solid active elements based on nanoporous aluminum oxide films activated with rhodamine 6G. Nanotechnologies in Russia, 2017, 12(5-6), P. 276–284.

13. Lyubas G.A., Shelkovnikov V.V., and Korotaev S.V. Optical interferometric sensor based on thin layers of nanoporous anodized aluminum containing nanoparticles of noble metals. Nanotechnologies in Russia, 2016, 11(1-2), P. 29–40.

14. Shelkovnikov V.V., Lyubas G.A., and Korotaev S.V. Enhanced reflective interference spectra of nanoporous anodic alumina films by double electrochemical deposition of chemical metal nanoparticles. Prot. Met. Phys. Chem. Surf., 2016, 52(2), P. 227–231.

15. Shelkovnikov V.V., Lyubas G.A., Korotaev S.V. Controlled interference color of the metal surface by combination of the chemical and electrochemical aluminum surface treatment. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(5), P. 718–727.

16. Kumeria T., Rahman M.M., Santos A., Ferre´-Borrull J., Marsal L.F., Losic D. Structural and optical nanoengineering of nanoporous anodic alumina rugate filters for real-time and label-free biosensing applications. Anal. Chem., 2014, 86, P. 1837–1844.

17. Santos A., Kumeria T., Losic D. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors. Materials, 2014, 7, P. 4297– 4320.

18. Santos A., Kumeria T., Losic D. Optically optimized photoluminescent and interferometric biosensors base on nanoporous anodic alumina: A comparison. Anal. Chem., 2013, 85, P. 7904–7911.

19. Ferré-Borrull J., Rahman M.M., Pallares J., Marsal L.F. Tuning nanoporous anodic alumina distributed-Bragg reflectors with the number of anodization cycles and the anodization temperature. Nanoscale Research Letters, 2014, 9, P. 416–422.

20. Ferré-Borrull J., Pallares J., Macias G., Marsal L.F. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications. Materials, 2014, 7, P. 5225–5253.

21. Macias G., Hernández-Eguía L.P., Ferré-Borrull J., Pallares J., Marsal L.F. Gold-coated ordered nanoporous anodic alumina bilayers for future label-free interferometric biosensors. ACS Appl. Mater. Interfaces, 2013, 5, P. 8093–8098.

22. Hwang S.K., Jeong S.H., Lee O.J., Lee K.H. Fabrication of vacuum tube arrays with a submicron dimension using anodic aluminum oxide nanotemplates. Microelectronic Engineering, 2005, 77, P. 2–7.


Рецензия

Для цитирования:


Lyubas G.A. Generation of laser radiation by nanostructured solid active elements with selective optical nanoresonators formed in nanoporous aluminum oxide films. Наносистемы: физика, химия, математика. 2017;8(6):793-797. https://doi.org/10.17586/2220-8054-2017-8-6-793-797

For citation:


Lyubas G.A. Generation of laser radiation by nanostructured solid active elements with selective optical nanoresonators formed in nanoporous aluminum oxide films. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):793-797. https://doi.org/10.17586/2220-8054-2017-8-6-793-797

Просмотров: 6


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)