Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Fractal analysis – a surrogate technique for material characterization

https://doi.org/10.17586/2220-8054-2017-8-6-809-815

Аннотация

Fractal analysis has emerged as a potential analytical tool in almost all branches of science and technology. The paper is the first report of using fractal dimension as a surrogate technique for estimating particle size. A regression equation is set connecting the soot particle size and fractal dimension, after investigating the Field Emission Scanning Electron Microscopic (FESEM) images of carbonaceous soot from five different sources. Since the fractal dimension is an invariant property under the scale transformation, an ordinary photograph of the soot should also yield the same fractal dimension. This enables one to determine the average size of the soot particles, using the regression equation, by calculating the fractal dimension from the photograph. Hence, instead of frequent measurement of average particle size from FESEM, this technique of estimating the particle size from the fractal dimension of the soot photograph, is found to be a potentially cost-effective and non-contact method.

Об авторах

M. S. Swapna
Department of Optoelectronics and Department of Nanoscience and Nanotechnology, University of Kerala
Индия

Trivandrum, Kerala, 695581



S. Sankararaman
Department of Optoelectronics and Department of Nanoscience and Nanotechnology, University of Kerala
Индия

Trivandrum, Kerala, 695581



Список литературы

1. Falconer K. Fractals: A Very Short Introduction. Oxford University press, United Kingdom, 2013.

2. Kaandorp J.A. Fractal modeling: growth and form in biology. Springer-Verlag, Berlin, Germany, 1994.

3. Gleick J. Chaos: making a new science. Penguin Books, New York, 1987.

4. Liebovitch L.S. Fractals and Chaos and Simplified for the Life Sciences, Oxford University Press, 1998.

5. Liebovitch L.S., Shehadeh L. The Mathematics and Science of Fractals. URL: www.ccs.fau.edu/liebovitch/larry.html.

6. Dobrescu R., Ichim L., Mocanu S., Popescu D. Benign and Malignant Breast Tumors: Diagnosis Using Fractal Measures. Proceedings of the 18th International Conference on System Theory, IEEE, Control and Computing, Sinaia, Romania, October 17–19, 2014, P. 82–86.

7. Harrar K., Hamami L. The box counting method for evaluate the fractal Dimension in radiographic images. 6th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, Cairo, Egypt, December 29–31, 2007, P. 385–389.

8. Seshadri T.R. Fractal analysis of galaxy surveys. Bull. Astr. Soc. India, 2005, 33, P. 1–9.

9. Addison P.S. Fractals and Chaos: An Illustrated Course. Institute of Physics Publishing, Dirac House, UK, 1997.

10. Annadhason A. Methods of Fractal Dimension Computation. International Journal of Computer Science and Information Technology & Security, 2012, 2 (1), P. 166–169.

11. Tripolskii A.I., Serebrii T.G., et al. Fractal analysis of carbon nanotube agglomerates obtained by chemical vapor decomposition of Ethylene over nickel nanoparticles. Theoretical and Experimental Chemistry, 2009, 45 (2), P. 93–97.

12. Kumar D., Verma V., Dharamvir K. Elastic Moduli of Carbon Nanotubes Using Second Generation Improved Brenner Potential. J. Nano Res., 2011, 15, P. 1–10.

13. Anu Mohan, Manoj B. Synthesis and Characterization of Carbon Nanospheres from Hydrocarbon Soot. Int. J. Electrochem. Sci., 2012, 7, P. 9537–9549.

14. Unga´r T., Gubicza J., Gabor R., Cristian Pantea N. Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon, 2002, 4, P. 929–937.

15. Flahaut E., Peigney A., Laurent C., Rousset A. Synthesis of single-walled carbon nanotubeCoMgO composite powders and extraction of the nanotubes. J. Mater. Chem., 2000, l0, P. 249.

16. Hussain S., Jha P., et al. Spectroscopic Investigation of Modified Single Wall Carbon Nanotube. J. Mod. Phys., 2011, 2, P. 538–543.

17. Feder J. Fractals. Plenum Press, New York, 1988.

18. Markel V.A., George T.F. Optics of Nanostructured Materials. John Wiley & Sons, 2001.

19. Swapna M.S., Sankararaman S. Investigation of Graphene Oxide in Diesel Soot. J. Mater. Sci. Nanotechnol., 2017, 5 (1), P. 104.

20. Swapna M.S., Pooja V.M., et al. Synthesis and characterization of carbon nano kajal. JOJ Material Sci., 2017, 1 (4), 555566.


Рецензия

Для цитирования:


Swapna M.S., Sankararaman S. Fractal analysis – a surrogate technique for material characterization. Наносистемы: физика, химия, математика. 2017;8(6):809-815. https://doi.org/10.17586/2220-8054-2017-8-6-809-815

For citation:


Swapna M.S., Sankararaman S. Fractal analysis – a surrogate technique for material characterization. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):809-815. https://doi.org/10.17586/2220-8054-2017-8-6-809-815

Просмотров: 5


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)