Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Stable Ti9O10 nanophase grown from nonstoichiometric titanium monoxide TiOy nanopowder

https://doi.org/10.17586/2220-8054-2017-8-6-816-822

Аннотация

A new stable Ti9O10 nanophase (sp. gr. Immm) has been detected by X-ray diffraction (XRD) after high energy ball milling and long-term vacuum annealing of nanocrystalline powder of nonstoichiometric disordered and ordered titanium monoxide TiOy with B1 structure (sp. gr. Fm3̄m). With the help of XRD data, the unit cell of the Ti9O10 nanophase as well as the distribution of atoms and structural vacancies in the titanium and oxygen sublattices of this phase have been established. The crystal structure of Ti9O10 is derived from that of TiOy by (a) a migration of the vacancies to the specific crystallographic planes of B1 structure and (b) by orthorhombic distortions. The DFT calculations of the full energy of the coarse-crystalline phases TiOy and Ti9O10 revealed that the bulk ordered phase Ti9O10 is not preferable in comparison with the bulk disordered cubic phase TiOy with the same content of vacancies in the sublattices, so, it is the nanostate that causes the formation of Ti9O10.

Об авторах

A. A. Valeeva
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin
Россия

620990 Pervomayskaya 91, Ekaterinburg; 620002 Mira 19, Ekaterinburg



M. G. Kostenko
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Россия

620990 Pervomayskaya 91, Ekaterinburg



Список литературы

1. Okamoto H. O–Ti (Oxygen-Titanium). J. Phase Equil. Diffus., 2011, 32, P. 473–474.

2. Anderson S., Collen B., Kuylenstierna U., Magneli A. Phase Analysis Studies on the Titanium–Oxygen System. Acta Chem. Scand., 1957, 11, P. 641–1652.

3. Banus M.D., Reed. T.B. Structural, electrical and magnetic properties of vacancy stabilized cubic TiO and VO. In: The Chemistry of Extended Defects in Non-Metallic Solids, Amsterdam-London: North-Holland Publ., 1970, P. 488–521.

4. Watanabe D., Castles J.R., Jostson A., Malin A.S. Ordered Structure of Titanium Oxide. Nature, 1966, 210, P. 934–936.

5. Rempel A.A., Valeeva A.A. Thermodynamics of atomic ordering in nonstoichiometric transition metal monoxides. Mend. Communication, 2010, 20, P. 101–103.

6. Hilti E. Neue Phasen im System Titan–Sauerstoff. Naturwissenschaften, 1968, 55, P. 130–131.

7. Gusev A.I., Valeeva A.A. Diffraction of electrons in the Cubic Ti5O5 superstructure of titanium monoxide. JETP Letters, 2012, 96, P. 364–369.

8. Amano S., Bogdanovski D., et al. ε–TiO, a Novel Stable Polymorph of Titanium Monoxide. Angew. Chem. Int. Ed., 2016, 55, P. 1652– 1657.

9. Khaenko B.V., Kachkovskaya E.. Ordering and phase ratios in Ti–O system in the range of titanium monoxide existing. Poroshkovaya metallurgiya (Powder metallurgy), 1986, 6, P. 52–59.

10. Valeeva A.A., Rempel A.A., Gusev A.I. Ordering of cubic titanium monoxide into monoclinic Ti5O5. Inorganic materials, 2001, 37, P. 603–612.

11. Valeeva A.A., Nazarova S.Z., Rempel A.A. Influence of Particle Size, Stoichiometry, and Degree of Long-Range Order on Magnetic Susceptibility of Titanium Monoxide. Physics of the Solid State, 2016, 58, P. 771–778.

12. Rempel A.A. Hybrid nanoparticles based on sulfides, oxides, and carbides. Russ. Chem. Bull., 2013, 4, P. 857–868.

13. Schaefer H.-E. Nanoscience. Springer Verlag, Berlin, 2010, 772 p.

14. Valeeva A.A., Nazarova S.Z., Rempel A.A. In situ study of atomic-vacancy ordering in stoichiometric titanium monoxide by the magnetic susceptibility. JETP Letters, 2015, 101, P. 258–263.

15. Valeeva A.A., Rempel A.A., Gusev A.I. Two-sublattice ordering in titanium monoxide. JETP Letters, 2000, 71, P. 460–464.

16. Hall W.H. X-Ray Line Broadening in Metals. Proc. Phys. Soc. London. Sect. A, 1949, 62, P. 741–743.

17. Hall W.H., Williamson G.K. The Diffraction Pattern of Cold Worked Metals: I The Nature of Extinction. Proc. Phys. Soc. London. Sect. B, 1951, 64, P. 937–946.

18. Valeeva A.A., Petrovykh K.A., Schroettner H., Rempel A.A. Effect of stoichiometry on the size of titanium monoxide nanoparticles produced by fragmentation. Inorganic Materials, 2015, 51, P. 1132–1137.

19. Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A, 1965, 140, P. 1133–1138.

20. Jones R.O., Gunnarsson O. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 1989, 61, P. 689–746.

21. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77, P. 3865–3868.

22. Giannozzi P., Baroni S., Bonini N. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter, 2009, 21, 395502 (19 p.).

23. Gusev A.I. Ordered Orthorhombic Phases of Titanium Monoxide. JETP Letters, 2001, 74, P. 91–95.

24. Payne M.C., Teter M.P., et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992, 64, P. 1045–1097.

25. Andersson D.A., Korzhavyi P.A., Johansson B. Thermodynamics of structural vacancies in titanium monoxide from first-principles calculations. Phys. Rev. B, 2005, 71, 144101 (12 p.).

26. Graciani J., Mrquez A., Sanz J.F. Role of vacancies in the structural stability of α–TiO: A first-principles study based on density-functional calculations. Phys. Rev. B, 2005, 72, 054117 (6 p.).

27. Kostenko M.G., Lukoyanov A.V., Zhukov V.P., Rempel A.A. Vacancies in ordered and disordered titanium monoxide: Mechanism of B1 structure stabilization. J. Sol. St. Chem., 2013, 204, P. 146–152.

28. Kostenko M.G., Lukoyanov A.V., Zhukov V.P., Rempel A.A. Effect of the long-range order in the vacancy distribution on the electronic structure of titanium monoxide TiO1.0. JETP Lett., 2012, 96, P. 507–510.

29. Kostenko M.G., Rempel A.A., Sharf S.V., Lukoyanov A.V. Simulation of the short-range order in disordered cubic titanium monoxide TiO1.0. JETP Lett., 2013, 97, P. 616–620.


Рецензия

Для цитирования:


Valeeva A.A., Kostenko M.G. Stable Ti9O10 nanophase grown from nonstoichiometric titanium monoxide TiOy nanopowder. Наносистемы: физика, химия, математика. 2017;8(6):816-822. https://doi.org/10.17586/2220-8054-2017-8-6-816-822

For citation:


Valeeva A.A., Kostenko M.G. Stable Ti9O10 nanophase grown from nonstoichiometric titanium monoxide TiOy nanopowder. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):816-822. https://doi.org/10.17586/2220-8054-2017-8-6-816-822

Просмотров: 6


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)