Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Cerium dioxide nanoparticles as third-generation enzymes (nanozymes)

https://doi.org/10.17586/2220-8054-2017-8-6-760-781

Abstract

Ceria nanoparticles are capable of performing the function of some enzymes (such as oxidoreductases, phosphatase) and can be classified as nanozymes. In this review, the actual data on the enzymatic activity of ceria were critically analyzed and specific conditions under which the cerium dioxide nanoparticles can act as enzymes were defined. The presented analysis may be useful in the planning, design and synthesis of ceria nanoparticles having the desired enzymatic functions required for various processes, including the development of the nanodrugs, which exhibit the therapeutic effect depending on their composition and pH of media, development of molecular sensors and biosensors, etc.

About the Authors

A. L. Popov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

Pushchino, Moscow region, 142290



A. B. Shcherbakov
Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine
Ukraine

Kyiv D0368



N. M. Zholobak
Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine
Ukraine

Kyiv D0368



A. Ye. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

Moscow 119991



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

Moscow 119991



References

1. Kirby A.J. Enzyme Mechanisms, Models, and Mimics. Angew. Chem., Int. Ed. 1996, 35, P. 706–724.

2. Breslow R. Artificial Enzymes and Enzyme Models, in Advances in Enzymology and Related Areas of Molecular Biology, ed. A. Meister, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1986, V. 58, pp. 1–60.

3. Schmuck C., Merschky M., Rether C., Geibel B. Artificial Enzyme Mimics, in Supramolecular Chemistry: from Molecules to Nanomaterials, ed. J.W. Steed and P.A. Gale, 2012.

4. Breslow R., Overman L.E., “Artificial enzyme” combining a metal catalytic group and a hydrophobic binding cavity. J. Am. Chem. Soc. 1970, 92, P. 1075–1077.

5. Manea F., Houillon F.B., Pasquato L., Scrimin P. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angew. Chem., Int. Ed. 2004, 43, P. 6165–6169.

6. Hu X.N., Liu J.B., Hou S., Wen T., Liu W.Q., Zhang K., He W.W., Ji Y.L., Ren H.X., Wang Q., Wu X.C. Research progress of nanoparticles as enzyme mimetics. Sci. China Phys. Mech. Astron, 2011, 54, P. 1749–1756.

7. Wei H., Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev., 2013, 42, P. 6060–6093.

8. Wang Z., Quan Z., Lin J. Inorg. Chem., 2007, 46, P. 5237.

9. Shcherbakov A.B., Ivanov V.K., Zholobak N.M., Ivanova O.S., Krysanov E.Y., Baranchikov A.E., Spivak N.Ya., Tretyakov Y.D. Nanocrystalline ceria based materials-Perspectives for biomedical application. Biophysics, 2011, 56, P. 987–1004.

10. Ivanov V.K. Habil. Thesis, IGIC RAS of Moscow, 2011.

11. Ivanov V.K., Polezhaeva O.S., Shcherbakov A.B., Gil’ D.O., Tret’yakov Y.D. Microwave-hydrothermal synthesis of stable nanocrystalline ceria sols for biomedical uses. Russ. J. Inorg. Chem., 2010, 55, P. 1–5.

12. Ivanov V.K., Polezhaeva O.S., Shaporev A.S., Baranchikov A.E., Shcherbakov A.B., Usatenko A.V. Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids. Russ. J. Inorg. Chem. 2010, 55, P. 328–332.

13. Ivanov V.K., Shcherbakov A.B., Baranchikov A.E., Kozik V.V. Synthesis, structure, physicochemical properties and biological activity of nanodispersed cerium dioxide. Tomsk, Tomsk State University, 2013.

14. Ivanova O.S., Shekunova T.O., Ivanov V.K., Shcherbakov A.B., Popov A.L., Davydova G.A., Tret’yakov Y.D. One-stage synthesis of ceria colloid solutions for biomedical use. Doklady Chem., 2011, 437, P. 103–106.

15. Ivanov V.K., Shcherbakov A.B., Usatenko A.V. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide. Russ. Chem. Rev., 2009, 78, P. 855–871.

16. Sun C., Xue D. Size-dependent oxygen storage ability of nano-sized ceria. Phys. Chem., 2013, 15(34), P. 14414–14419.

17. Tarnuzzer R.W., Colon J., Patil S., Seal S. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett., 2005, 5, P. 2573–2577.

18. Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomater, 2008, 29, P. 2705–2709.

19. Karakoti A.S., Singh S., Kumar A., Malinska M., Kuchibhatla S.V.N.T., Wozniak K., Self W.T., Seal S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J. Am. Chem. Soc., 2009, 131, P. 14144–14145.

20. Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, P. 1056–1058.

21. Shcherbakov A.B., Ivanov V.K., Sirota T.V., Tret’yakov Y.D. Inhibition of adrenaline autooxidation by nanocrystalline ceria. Doklady Chem., 2011, 437, P. 60–62.

22. Klochkov V.K., Grigorova A.V., Sedyh O.O., Malyukin Yu.V. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids Surf. A., 2012, 409, P. 176–182.

23. Batinic´-Haberle I., Rebouc¸as J.S., Spasojevic´I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal, 2010, 13, P. 877–918.

24. Iranzo O. Manganese complexes displaying superoxide dismutase activity: A balance between different factors. Bioorg. Chem., 2011, 39, P. 73–87.

25. Yu P., Hayes S.A., O’Keefe T.J., O’Keefe M., Stoffer J.O. The phase stability of cerium species in aqueous systems II. The Ce(III/IV)-H2O-H2O2/O2 systems. Equilibrium considerations and Pourbaix diagram calculations. J. Electrochem. Soc., 2006, 153, P. C74–C79.

26. Manda G., Nechifor M.T., Neagu T.-M. Reactive oxygen species, cancer and anti-cancer therapies. Curr. Chem. Biol., 2009, 3, P. 22–46.

27. Evans M.G., Uri N. Photo-oxidation of water by ceric ions. Nature, 1950, 166(4223), P. 602–603.

28. Xue Y., Luan Q., Yang D., Yao X., Zhou K. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C, 2011, 115, P. 4433–4438.

29. Shcherbakov A.B., Zholobak N.M., Ivanov V.K., Ivanova O.S., Marchevsky A.V., Baranchikov A.E., Tretyakov Y.D. Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria. Russ. J. Inorg. Chem., 2012, 57, P. 1411–1418.

30. Babu S., Velez A., Wozniak K., Szydlowska J., Seal S. Electron paramagnetic study on radical scavenging properties of ceria nanoparticles. Chem. Phys. Lett., 2007, 442, P. 405–408.

31. Asati A., Santra S., Kaittanis C., Nath S., Perez J.M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed., 2009, 48, P. 2308–2312.

32. Peng Y., Chen X., Yi G., Gao Z. Mechanism of the oxidation of organic dyes in the presence of nanoceriam. Chem. Commun., 2011, 47, P. 2916–2918.

33. Pautler R., Kelly E.Y., Huang P.J.J., Cao J., Liu B., Liu J. Attaching DNA to nanoceria: Regulating oxidase activity and fluorescence quenching. ACS Appl. Mater. Interfaces, 2013, 5, P. 6820–6825.

34. Makarov S.Z., Ladeinova L.V. Peroxy compounds of cerium. Russ. Chem. Bull., 1961, 10, P. 1091–1096.

35. Karakoti A.S., Munusamy P., Hostetler K., Kodali V., Kuchibhatla S., Orr G., Pounds J.G., Teeguarden J.G., Thrall B.D., Baer D.R. Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles. Surf. Interface Anal., 2011, 44, P. 882–889.

36. Floor M., Kieboom A.P.G., Van Bekkum H. Recueil des Travaux Chimiques des Pays-Bas. 1989, 108, P. 128.

37. Rizkalla E.N., Lajunen L.H.J., Choppin G.R. Kinetics of the decomposition of hydrogen peroxide in the presence of ethylenediaminetetraacetatocerium(IV) complex. Inorg. Chim. Acta., 1986, 119, P. 93–98.

38. Heckert E.G., Seal S., Self W.T. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ. Sci. Technol., 2008, 42, P. 5014–5019.

39. Halbhuber K.J., Hulstaert C.E., Feuerstein H., Zimmermann N. Cerium as capturing agent in phosphatase and oxidase histochemistry. Theoretical background and applications. Prog. Histochem. Cytochem., 1994, 28, P. 1–120.

40. Pirmohamed T., Dowding J.M., Singh S., Wasserman B., Heckert E., Karakoti A.S., King J.E., Seal S., Self W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, P. 2736–2738.

41. Das S., Dowding J.M., Klump K.E., McGinnis J.F., Self W., Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine, 2013, 8, P. 1483-1508.

42. Perez J.M., Asati A., Nath S., Kaittanis A. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small, 2008, 4, P. 552–556.

43. Ivanov V.K., Usatenko A.V., Shcherbakov A.B. Antioxidant Activity of Nanocrystalline Ceria to Anthocyanins. Russ. J. Inorg. Chem., 2009, 54, P. 1522–1527.

44. Jiao X., Song H., Zhao H., Bai W., Zhang L., Lv Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods., 2012, 4, P. 3261–3267.

45. Stoianov O.O., Ivanov V.K., Shcherbakov A.B., Stoyanova I.V., Chivireva N.A., Antonovich V.P. Determination of cerium(III) and cerium(IV) in nanodisperse ceria by chemical methods. Russ. J. Inorg. Chem., 2014, 59, P. 15–23.

46. Linnane A.W., Kios M., Vitetta L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology, 2007, 8, P. 445–467.

47. Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), P. 239–247.

48. Smith R.A., Murphy M.P. Mitochondria-targeted antioxidants as therapies. Discov. Med., 2011, 11, P. 106–114.

49. Shepel E.A., Zholobak N.M., Shcherbakov A.B., Antonovitch G.V., Yanchiy R.I., Ivanov V.K., Tretyakov Y.D. Ceria Nanoparticles Boost Activity of Aged Murine Oocytes. Nano Biomed. Eng., 2012, 4, P. 188–194.

50. Courbiere B., Auffan M., Rollais R., Tassistro V., Bonnefoy A., Botta A., Perrin J. Ultrastructural interactions and genotoxicity assay of cerium dioxide nanoparticles on mouse oocytes. Int. J. Mol. Sci., 2013, 14, P. 21613–21628.

51. Chane-Ching J.-Y. Cerium IV compound and method for its preparation. Europ. Pat. EP0208580 B1, 1990.

52. Zholobak N., Shcherbakov A., Ivanov V., Olevinskaya Z., Spivak N. Antiviral effectivity of ceria colloid solutions. Antiviral Res., 2011, 90, P. A67.

53. Song C.W., Griffin R., Park H.J. Influence of tumor pH on therapeutic response. In: Cancer Drug Resistance. ed. Teicher B.A. Humana Press, New Jersey, 2006, P. 21–42.

54. Osinsky S., Vaupel P. Microphysiology of tumors. Naukova dumka, Kiev, 2009.

55. Zholobak N.M., Shcherbakov A.B., Bogorad-Kobelska A.S., Ivanova O.S., Baranchikov A.Ye., Spivak N.Ya., Ivanov V.K. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J. Photochem. Photobiol. B, 2014, 130, P. 102–108.

56. Lin W., Huang Y.W., Zhou X.D., Ma Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol., 2006, 25, P. 451–457.

57. Cheng G., Guo W., Han L., Chen E., Kong L., Wang L., Ai W., Song N., Li H., Chen H. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol. Vitro, 2013, 27, P. 1082–1088.

58. Alili L., Sack M., von Montfort C., Giri S., Das S., Carroll K.S., Zanger K., Seal S., Brenneisen P. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid. Redox Signal, 2013, 19, P. 765–778.

59. Alili L., Sack M., Karakoti A.S., Teuber S., Puschmann K., Hirst S.M., Reilly C.M., Zanger K., Stahl W., Das S., Seal S., Brenneisen P. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials, 2011, 32, P. 2918–2929.

60. Renu G., Divya V.V. Rani, Nair S.V., Subramanian K.R.V., Lakshmanan V.K. Development of cerium oxide nanoparticles and its cytotoxicity in prostate cancer cells. Adv. Sci. Lett., 2012, 6, P. 17–25.

61. Scherbakov A.B., Ivanov V.K., Zholobak N.M., Baranchikov A.E., Spivak N.Y., Ivanova O.S., Tretyakov Y.D. Rus. Pat. RU2012112921 C1, 2012.

62. Wondrak G.T. Redox-directed cancer therapeutics: Molecular mechanisms and opportunities. Antioxid. Redox Signal, 2009, 11, P. 3013– 3069.

63. McGinnis J.F., Wong L.L., Zhou X. Inhibition of neovascularization by cerium oxide nanoparticles, US Pat. US20090269410 A1, 2009.

64. Wason M.S., Zhao J. Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am. J. Transl. Res., 2013, 5, P. 126–131.

65. Dowding J.M., Dosani T., Kumar A., Seal S., Self W.T. Cerium oxide nanoparticles scavenge nitric oxide radical (NO). Chem. Commun., 2012, 48, P. 4896–4898.

66. Ivanov V.K., Shcherbakov A.B., Ryabokon’ I.G., Usatenko A.V., Zholobak N.M., Tretyakov Y.D. Inactivation of the nitroxyl radical by ceria nanoparticles. Doklady Chem., 2010, 430, P. 43–46.

67. Dowding J.M., Seal S., Self W.T. Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOO-). Drug Deliv. Transl. Res., 2013, 3, P. 375–379.

68. Kuchma M.H., Komanski C.B., Colon J., Teblum A., Masunov A., Alvarado B., Babu S., Seal S., Summy J., Baker C.H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed. Nanotech. Biol. Med., 2010, 6, P. 738–744.

69. Jia W., Andaya A., Leary J.A. Novel mass spectrometric method for phosphorylation quantification using cerium oxide nanoparticles and tandem mass tags. Anal. Chem., 2012, 84, P. 2466–2473.

70. Park E.J., Choi J., Park Y.K., Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 2008, 245, P. 90–100.

71. Niu J.L., Wang K.K., Kolattukudy P.E. Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J. Pharmacol. Exp. Ther., 2011, 338, P. 53–61.

72. Amici C., Belardo G., Rossi A., Santoro M.G. Activation of IκB kinase by herpes simplex virus Type 1. A novel target for anti-herpetic therapy. J. Biol. Chem., 2001, 276, P. 28759–28766.

73. Celardo I., Pedersen J.Z., Traversa E., Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3, P. 1411– 1420.

74. Rytting H. Pharmaceutical nanotechnology: A new section in IJP. Int. J. Pharm., 2004, 281, P. 1.


Review

For citations:


Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.Ye., Ivanov V.K. Cerium dioxide nanoparticles as third-generation enzymes (nanozymes). Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):760-781. https://doi.org/10.17586/2220-8054-2017-8-6-760-781

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)