Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of СаF2-YF3 nanopowders by co-precipitation from aqueos solutions

https://doi.org/10.17586/2220-8054-2017-8-4-462-470

Abstract

   Study of the CaF2–YF3 system by co-precipitation from aqueous nitrate solutions revealed the formation of Ca1−xYxF2+x solid solution precipitate containing up to 20 mol. % yttrium fluoride (x ≤ 0.2). A higher yttrium to calcium ratio in the starting solutions caused additional precipitation of orthorhombic β-YF3 nanophase elongated along the ⟨b⟩ axis. Cubic (H3O)Y3F10 phase was also formed (SSG Fm3m, a = 11.60 ˚A, KY3F10 structural type).

About the Authors

P. P. Fedorov
A. M. Prokhorov General Physics Institute, Russian Academy of Sciences
Russian Federation

119991; 38 Vavilov Street; Moscow



M. N. Mayakova
A. M. Prokhorov General Physics Institute, Russian Academy of Sciences
Russian Federation

119991; 38 Vavilov Street; Moscow



S. V. Kuznetsov
A. M. Prokhorov General Physics Institute, Russian Academy of Sciences
Russian Federation

119991; 38 Vavilov Street; Moscow



V. V. Voronov
A. M. Prokhorov General Physics Institute, Russian Academy of Sciences
Russian Federation

119991; 38 Vavilov Street; Moscow



Yu. A. Ermakova
A. M. Prokhorov General Physics Institute, Russian Academy of Sciences
Russian Federation

119991; 38 Vavilov Street; Moscow



A. E. Baranchikov
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

119991; Leninskii pr. 31; Moscow



References

1. Thoma R.E., Hebert G.M., Insley H., Weavwe C.F. Phase equilibria in the system sodium fluoride-yttrium fluoride. Inorg. Chem., 1963, 2(5), P. 1005–1012.

2. Fedorov P.P., Sobolev B.P., Belov S.F. Fusibility diagram of the system NaF-YF<sub>3</sub>, and the cross-section Na<sub>0.4</sub>Y<sub>0.6</sub>F<sub>2.2</sub>-YOF Inorg. Mater., 1979, 15(5), P. 640–643.

3. Fedorov P.P. Systems of alcali and rare-earth metal fluorides. Russian J. Inorg. Chem., 1999, 44(11), P. 1703–1727.

4. Fedorov P.P., Kuznetsov S.V., Osiko V.V. Elaboration of nanofluorides and ceramics for optical and laser applications. Chapter in the book Photonic & Electronic Properties of Fluoride Materials, Ed. Tressaud A., Poeppelmeier K., Amsterdam et al.: Elsevier, 2016, P. 7–31.

5. Fedorov P.P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russ. J. Inorg. Chem., 2000, 45, Suppl. 3, P. S268–S291.

6. Vogt T. Uber die Flusspat-Yttrofluoritgruppe. Neues Jahrb. Mineral, 1914, 2(1), P. 9–13.

7. Fedorov P.P., Izotova O.E., Alexandrov V.B., Sobolev B.P. New phases with fluorite-derived structure in CaF<sub>2</sub> - (Y, Ln)F<sub>3</sub> systems. J. Solid State Chem., 1974, 9(4), P. 368–374.

8. Seiranian K.B., Fedorov P.P., Garashina L.S., Molev G.V., Karelin V.V., Sobolev B.P. Phase diagram of the system CaF<sub>2</sub> -YF<sub>3</sub>. J. Crystal Growth, 1974, 26(1), P. 61–64.

9. Crystals with the fluorite structure. Ed. Hayes W. Oxford: Clarendon Press, 1974, 448 pp.

10. Fedorov P.P., Sobolev B.P. Variable-composition phases with the LaF<sub>3</sub> structure in the systems MF<sub>2</sub>-(Y,Ln)F<sub>3</sub>. II. The systems CaF<sub>2</sub>-(Y,Ln)F<sub>3</sub> (thermal characteristics and formation of berthollides). Kristallografiya, 1975, 20(5), P. 584–586.

11. Sobolev B.P., Aleksandrov V.B., Fedorov P.P., et al. Variable-composition phases with the LaF<sub>3</sub> structure in the systems MF<sub>2</sub>-(Y,Ln)F<sub>3</sub>. IV. X-ray characteristics, heterovalent isomorphic substitutions. Kristallografiya, 1976, 21(1), P. 49–54.

12. Gettmann W., Greis O. Uber fluorit- und tysonitverwandte Ordnungsphasen im System CaF<sub>2</sub>-YF<sub>3</sub>. J. Solid State Chem., 1978, 26(2), P. 255–263.

13. Kaminskii A.A. Laser crystals: their physics and properties. Berlin, Heidelberg: Springer Verlag, 1990, 459 pp.

14. Greis O., Hashke J.M. Rare earth fluorides. In Handbook on the Physics and Chemistry of Rare Earth. Amsterdam: Elsevier, 1982, v.5, P. 387–460.

15. Kuntz A.F. Fluorite crystallization under hydrothermal conditions. Proc. of Geology Institute, Komi department of USSR Academy of Sciences, 1982, 39, P. 31–41. (in Russian)

16. Otroshchenko L.P., Aleksandrov V.B., Bydanov N.N., Simonov V.I., Sobolev B.P. Neutron-diffraction structure refinement of the Ca<sub>0.90</sub>Y<sub>0.10</sub>F<sub>2.10</sub> solid solution. Kristallografiya, 1988, 33(3), P. 764–765. (in Russian)

17. Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. Specific features of ionic transport in nonstoichiometric fluorite-type Ca<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> (R = La-Lu, Y, Sc) phases. Solid State Ionics, 1990, 37, P. 125–137.

18. Sobolev B.P. The rare earth trifluorides. Part 1. The high temperature chemistry of the rare earth trifluorides. Barcelona: Institut d‘Estudis Catalans, 2000, 520 pp.

19. Sobolev B.P. The rare earth trifluorides. Part 2. Introduction to materials sience of multicomponent metal fluoride crystals. Barcelona: Institut d‘Estudis Catalans, 2001, 459 pp.

20. Karimov D.N., Krivandina E.A., Zhmurova Z.I., Sobolev B.P., Bezhanov V.A., Chernov S.P., Shapochkin G.M. Investigation of multicomponent fluoride optical materials in the UV spectral region: I. Single crystals of Ca<sub>1-x</sub>R<sub>x</sub>F<sub><sub>2+x</sub></sub> (R = Sc, Y, La, Yb, Lu) solid solutions. Crystallogr. Rep., 2006, 51(6), P. 1009–1015.

21. Fedorov P.P. Third law of thermodynamics as applied to phase diagrams. Russ. J. Inorg. Chem., 2010, 55(11), P. 1722–1739.

22. Bolotina N.B., Kalyukanov A.I., Chernaya T.S., Verin I.A., Buchinskaya I.I., Sorokin N.I., Sobolev B.P. X-ray and neutron diffraction study of the defect crystal structure of the as-grown nonstoichiometric phase Y<sub>0.715</sub>Ca<sub>0.285</sub>F<sub>2.715</sub>. Crystallogr. Rep., 2013, 58(4), P. 575–585.

23. Popov P.A., Fedorov P.P., Osiko V.V. Thermal conductivity of single crystals of the Ca<sub>1-x</sub>Y<sub>x</sub>F<sub>2+x</sub> solid solution. Doklady Physics, 2014, 59(5), P. 199–202.

24. Krahl T., Scholz G., Kemnitz E. Solid Solutions CaF<sub>2</sub>−YF<sub>3</sub> with fluorite structure prepared on the solgel route: investigation by multinuclear MAS NMR spectroscopy. J. Phys. Chem. C, 2014, 118, P. 21066–21074.

25. Bergstol S., Jensen B.B., Neuman H. Tveitite, a new calcium yttrium fluoride. Lithos, 1977, 10, P. 81–87.

26. Bevan D.J.M., Strahle J., Greis O. The crystal structure of tveitite, an ordered yttrofluorite mineral. J. Solid State Chem., 1982, 44, P. 75–81.

27. Atencio D., Bastos Neto A.C., Pereira V.P., et al. Waimirite-(Y), orthorhombic YF<sub>3</sub>, a new mineral from the Pitinga mine, Presidente Figueiredo, Amazonas, Brazil and from Jabal Tawlah, Saudi Arabia: description and crystal structure. Mineral. Magazine, 2015, 79(3), P. 767–780.

28. Fedorov P.P. Association of point defects in non stoichiometric M<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> fluorite-type solid solutions. Butll. Soc. Cat. Cien., 1991, 12(2), P. 349–381.

29. Kazanskii S.A., Ryskin A.I., Nikiforov A.E., Zaharov A.Yu., Ougrumov M.Yu., Shakurov G.S. EPR spectra and crystal fleld of hexamer rare-earth clasters in fluorites. Phys. Rev. B, 2005, 72, 014127 P. 1–11.

30. Popov P.A., Dykel’skii K.V., Mironov I.A., Demidenko V.A., Smirnov A.N., Smolyanskii P.L., Fedorov P.P., Osiko V.V., Basiev T.T. Thermal conductivity of CaF<sub>2</sub> optical ceramics. Doklady Physics, 2007, 52(1), P. 7–9.

31. Turkina T.M., Fedorov P.P., Sobolev B.P. Stability of plane crystallization front in growth of single crystals of solid solutions M<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> (where M = Ca,Sr,Ba, R = rare earth) from a melt Kristallografiya, 1986, 31(1), P. 83–87.

32. Kuznetsov S.V., Fedorov P.P. Morphological Stability of Solid-Liquid Interface during Melt Crystallization of Solid Solutions M<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub>. Inorg. Mater., 2008, 44(13), P. 1434–1458. (Supplement)

33. Sobolev B.P., Fedorov P.P. Hexagonal YF3’ structure type and high-temperature modifications of rare-earth trifluorides isostructural with YF<sub>3</sub>. Kristallografiya, 1973, 18(3), P. 392.

34. Kuznetzov S.V., Osiko V.V., Tkatchenko E.A., Fedorov P.P. Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev., 2006, 75(12), P. 1065–1082.

35. Fedorov P.P., Luginina A.A., Kuznetsov S.V., Osiko V.V. Nanofluorides. J. Fluorine Chem., 2011, 132(12), P. 1012–1039.

36. Lucier B.E.G., Johnston K.E., Arnold D.C., et. al. Comprehensive Solid-State Cheracterization of Rare Earth Fluoride Nanoparticles. J. Phys. Chem. C, 2014, 118(2), P. 1213–1228.

37. Van Veggel F.C.J.M. Upconversion of Ln<sup>3+</sup>-based Nanoparticles for Optical Bio-imaging. In: Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials. John Wiley Sons, 2014, P. 269–302.

38. Fedorov P.P., Luginina A.A., Popov A.I. Transparent Oxyfluoride Glass Ceramics. J. Fluorine Chem., 2015, 172, P. 22–50.

39. Naccache R., Yu Q., Capobianco J.A. The fluoride host: nucleation, growth, and upconversion of lanthanide-doped nanoparticles. Adv. Optical Mater., 2015, 3(4), P. 482–509.

40. D¨uvel A., Bednarcik J., ˇSepel´ak V., Heitjans P. Mechanosynthesis of the fast fluoride ion conductor Ba<sub>1-x</sub>La<sub>x</sub>F<sub>2+x</sub>: from the fluorite to the tysonite structure. J. Phys. Chem. C, 2014, 118, P. 7117–7129.

41. G. Scholz, S. Breitfeld, T. Krahl, A. D¨uvel, P. Heitjans, E. Kemnitz. Solid State Sciences, 2015, 50, P. 32–41.

42. Lei Lei, Daqin Chen, Feng Huang , Yunlong Yu, Yuansheng Wang. J. Alloys Comp., 2012, 540, P. 27–31.

43. Kouznetzov S.V., Yarotskya I.V., Fedorov P.P., Voronov V.V., Lavristchev S.V., Basiev T.T., Osiko V.V. Preparation of Nanopowdered M<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> (M = Ca, Sr, Ba; R = Ce, Nd, Er, Yb) Solid Solutions. Russian J. Inorg. Chem., 2007, 52, P. 315–320.

44. Fedorov P.P., Kuznetsov S.V., Voronov V.V., Yarotskya I.V., Arbenina V.V. Soft chemical synthesis of NaYF<sub>4</sub> nanopowders. Russian J. Inorg. Chem., 2008, 53(11), P. 1681–1685.

45. Fedorov P.P., Kuznetsov S.V., Mayakova M.N., et al. Coprecipitation from aqueous solutions to prepare binary fluorides. Russian J. Inorg. Chem., 2011, 56(10), P. 1525–1531.

46. Luginina, A.A., Fedorov, P.P., Kuznetsov, S.V., et al., Synthesis of ultrafine fluorite Sr<sub>1-x</sub>Nd<sub>x</sub>F<sub>2+x</sub> powders. Inorg. Mater., 2012, 48(5), P. 531–538.

47. Kuznetsov, S.V., Ovsyannikova, A.A., Tupitsyna, E.A., Yasyrkina, D.S., Voronov, V.V., Fedorov, P.P., Batyrev, N.I., Iskhakova, L.D., Osiko, V.V. Phase formation in LaF<sub>3</sub>-NaGdF<sub>4</sub>, NaGdF<sub>4</sub>-NaLuF<sub>4</sub>, NaYF<sub>4</sub>-NaLuF<sub>4</sub> systems: synthesis of powders by co-precipitation from aqueous solutions. J. Fluor. Chem., 2014, 161, P. 95–101.

48. S.V. Kuznetsov, D.S. Yasyrkina, A.V. Ryabova, D.V. Pominova, V.V. Voronov, A.E. Baranchikov, V.K. Ivanov, P.P. Fedorov. α-NaYF<sub>4</sub>:Yb:Er@AlPc(C<sub>2</sub>O<sub>3</sub>)<sub>4</sub> -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation. J. Fluor. Chem., 2016, 182, P. 104–108.

49. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Ermakov R.P., Samarina K.S., Popov A.I., Osiko V.V. Co-Precipitation of yttrium and barium fluorides from aqueous solutions. Mat. Res. Bull., 2012, 47, P. 1794–1799.

50. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Osiko V.V., Ermakov R.P., Gontar’ I.V., Timofeev A.A., Iskhakova L.D. Coprecipitation of barium–bismuth fluorides from aqueous solutions: nanochemical effects. Nanotechnologies in Russia, 2011, 6, P. 203–210.

51. Mayakova M.N., Kuznetsov S.V., Voronov V.V., Baranchikov A.E., Ivanov V.K., Fedorov P.P. Soft chemistry synthesis of powders in the BaF<sub>2</sub>-ScF<sub>3</sub> system. Russian J. Inorg. Chem., 2014, 59(7), P. 773–777.

52. Mayakova M.N., Voronov V.V., Iskhakova L.D., Kuznetsov S.V., Fedorov P.P. Low-temperature phase formation in the BaF<sub>2</sub>-CeF<sub>3</sub> system. J. Fluorine Chem., 2016, 187, P. 33–39.

53. Mayakova M.N., Luginina A.A., Kuznetsov S.V., Voronov V.V., Ermakov R.P., Baranchikov A.E., Ivanov V.K., Karban’ O.V., Fedorov P.P. Synthesis of SrF<sub>2</sub>-YF<sub>3</sub> nanopowders by co-precipitation from aqueous solutions. Mendeleev Communications, 2014, 24(6), P. 360–362.

54. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V. Low temperature phase formation in the CaF<sub>2</sub> - HoF<sub>3</sub> system. Russian J. Inorg. Chem., 2017, 62(9), P. 1173–1176.

55. Fedorov P.P., Sobolev B.P. Concentration dependence of unit-cell parameters of phases M<sub>1-x</sub>R<sub>x</sub>F<sub>2+x</sub> with the fluorite structure. Sov. Phys. Crystallogr, 1992, 37(5), P. 651–656.

56. Ayala F.P., Oliveira M.A.S., Gesland J.-Y., Moreira R.L. Electrical and dielectrical investigation of the conduction processes in KY<sub>3</sub>F<sub>10</sub> crystals. J. Phys. C.: Condensed Matter, 1998, 10, P. 5161–5170.

57. Podberezskay N.V., Potapova O.G., Borisov S.V., Gatilov Yu. V. KTb<sub>3</sub>F<sub>10</sub>crystal structure – cubic pacing of [Tb<sub>6</sub>F<sub>32</sub>]<sub>14</sub>− polyanions. J. Struct. Chem., 1976, 17(5), P. 948–950. (in Russian)

58. Vahrenev R.G., Mayakova M.N., Kuznetsov S.V., Ryabova A.V., Pominova D.V., Voronov V.V., Fedorov P.P. The research of synthesis and luminescent characteristics of calcium fluoride doped with ytterbium and erbium for biomedical application. Condensed Media and Interface Borders, 2016, 18(4), P. 478–484.


Review

For citations:


Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Ermakova Yu.A., Baranchikov A.E. Synthesis of СаF2-YF3 nanopowders by co-precipitation from aqueos solutions. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):462-470. https://doi.org/10.17586/2220-8054-2017-8-4-462-470

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)