Vibron transport in macromolecular chains with squeezed phonons
https://doi.org/10.17586/2220-8054-2018-9-5-597-602
Abstract
We investigate physical properties of a single vibronic intramolecular excitation propagating through a macromolecule, whose vibrational state can be described as a squeezed vacuum state. For a theoretical description of such a process, the partial dressing method of the vibronic excitation due to its interaction with phonons is used. We study the influence of the model parameters and strength of squeezing on the vibron dressing. It is demonstrated that for certain critical values of the model parameters a polaron crossover can occur, at which there is a sharp change in the migration nature of a vibron from the practically free to the heavy quasiparticle dressed by a phonon cloud. Increasing the strength of phonon squeezing is shown to increase the critical values of the model parameters, so that for high phonon squeezing the polaron crossover takes place in the very strong-coupling and adiabatic regime.
About the Authors
D. Cevizovi ˇ cSerbia
11001 Belgrade
A. V. Chizhov
Russian Federation
Joliot-Curie, 6, Dubna, 141980
S. Galovic
Serbia
11001 Belgrade
References
1. Dekker C., Ratner M. A. Electronic properties of DNA. Phys. World, 2001, 14 (8), P. 29–34.
2. Convell E. Polarons and transport in DNA. Top. Curr. Chem., 2004, 237, P. 73–102.
3. Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382 (6592), P. 607–609.
4. Davydov A. S. The theory of contraction of proteins under their excitation. J. Theor. Biol., 1973, 38 (3), P. 559–569.
5. Davydov A. S. Solitons in molecular systems. Phys. Scr., 1979, 20 (2), P. 387–394.
6. Alexander D. M., Krumhansl J. A. Localized excitations in hydrogen-bonded molecular crystals. Phys. Rev. B, 1986, 33 (10), P. 7172–7185.
7. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Physics, 1959, 8 (3), P. 325–342.
8. Rashba E. I. Self-trapping of excitons. Excitons, North-Holland, Amsterdam, 1982, P. 543–602.
9. Pouthier V. Vibron phonon in a lattice of H-bonded peptide units: A criterion to discriminate between the weak and the strong coupling limit. J. Chem. Phys., 2010, 132 (3), 035106.
10. Brown D.W., Ivic Z. Unification of polaron and soliton theories of exciton transport. ´ Phys. Rev. B, 1989, 40 (14), P. 9876–9887.
11. Yarkony D., Silbey R. Comments on exciton phonon coupling: Temperature dependence. J. Chem. Phys., 1976, 65 (3), P. 1042–1052.
12. Cevizovi ˇ c D., Galovi ´ c S., Ivi ´ c Z. Nature of the vibron self-trapped states in hydrogen-bonded macromolecular chains. ´ Phys. Rev. E, 2011, 84 (1), 011920.
13. Cevizovi ˇ c D., Galovi ´ c S., Reshetnyak A., Ivi ´ c Z. Vibron self-trapped states in biological macromolecules: Comparison of different ´ theoretical approaches. J. Phys.: Conf. Ser., 2012, 393 (1), 012033.
14. Garret G. A., Rojo A. G., Sood A. K., Whitaker J. F., Merlin R. Vacuum squeezing of solids: Macroscopic quantum states driven by light pulses. Science, 1997, 275 (5306), P. 1638–1640.
15. Beaud P. et al. Spatiotemporal stability of a femtosecond hard-X-ray undulator source studied by control of coherent optical phonons. Phys. Rev. Lett., 2007, 99 (17), 174801.
16. Johnson S. L. et al. Directly observing squeezed phonon states with femtosecond X-ray diffraction. Phys. Rev. Lett., 2009, 102 (17), 175503.
17. Nazmitdinov R. G., Chizhov A. V. Effect of compressed light on pumping of a crystal. Pis’ma v ZhETF, 1990, 52 (7), P. 993–996.
18. Artoni M., Birman J. L. Non-classical states in solids and detection. Opt. Commun., 1994, 104 (4–6), P. 319–324.
19. Hu X., Nori F. Quantum phonon optics: Coherent and squeezed atomic displacements. Phys. Rev. B, 1996, 53 (5), P. 2419–2424.
20. Lang I. G., Firsov Yu. A. Kinetic theory of semiconductors with low mobility. ZhETF, 1962, 43 (5/11), P. 1843–1860.
21. Misochko O. V., Hu J., Nakamura K. G. Controlling phonon squeezing and correlation via one- and two-phonon interference. Phys. Lett. A, 2011, 375 (46), P. 4141–4146.
22. Loudon R., Knight P. L. Squeezed light. J. Mod. Opt., 1987, 34 (6–7), P. 709–759.
Review
For citations:
Cevizovi ˇ c D., Chizhov A.V., Galovic S. Vibron transport in macromolecular chains with squeezed phonons. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5):597-602. https://doi.org/10.17586/2220-8054-2018-9-5-597-602