Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Correlation between structure and resistance of composites based on polystyrene and multilayered graphene oxide

https://doi.org/10.17586/2220-8054-2017-8-2-266-271

Abstract

The correlation between the structure, resistance and UV-irradiation impact on conductivity of polystyrene-based composites with multilayered graphene oxide flakes was observed. It is established that composites structure and conducting properties depend on concentration, surface modification and the methods by which graphene oxide was incorporated into the polystyrene matrix.

About the Authors

M. N. Nikolaeva
Institute of macromolecular compounds RAS
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg



T. D. Anan’eva
Institute of macromolecular compounds RAS
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg



A. N. Bugrov
Institute of macromolecular compounds RAS; Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg; ul. Professora Popova 5, 197376 St. Petersburg



A. T. Dideikin
Ioffe Institute RAS
Russian Federation

Polytehnicheskaya ul., 26 St. Petersburg, 194021



E. M. Ivankova
Institute of macromolecular compounds RAS; Ioffe Institute RAS
Russian Federation

Bolshoy pr. 31, 199004 St. Petersburg; Polytehnicheskaya ul., 26 St. Petersburg, 194021



References

1. Stankovich S., Dikin D.A., et. al. Graphene-based composite materials. Nature, 2006, 442(7100), P. 282–288.

2. Eda G., Chhowalla M. Graphene-based composite thin films for electronics. Nano Lett., 2009, 9(2), P. 814–822.

3. Abramov D., Arakelian S., et al. Interaction of femtosecond laser radiation with carbon materials: exfoliation of graphene structures and synthesis of low-dimensional carbon structures. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(1), P. 220–225.

4. Deepak A., Shankar P. Exploring the properties of lead oxide and tungsten oxide based graphene mixed nanocomposite films. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(3), P. 502–505.

5. Nikolaeva M.N., Bugrov A.N., et al. Conductive properties of the composite films of graphene oxide based on polystyrene in a metalpolymer-metal structure. Russ. J. Appl. Chem., 2014, 87(8), P. 1151–1155.

6. Ionov A.N. Josephson current-voltage characteristic of a composite based on polystyrene and graphene oxide. Tech. Phys. Lett., 2015, 41(7), P. 651–653.

7. Ionov A.N. Josephson-like behaviour of the current-voltage characteristics of multi-graphene flakes embedded in polystyrene. J. Low Temp. Phys., 2016, 182(3/4), P. 107–114.

8. Antonowitcz K. Possible superconductivity at room temperature. Nature, 1974, 247(5440), P. 358–360.

9. Esquinazi P., Garcia N., et. al. Indications for intrinsic superconductivity in highly oriented pyrolytic graphite. Phys. Rev. B., 2008, 78(13), P. 134516(1–8).

10. Scheike T., Bohlmannet W., et. al. Can doping graphite trigger room temperature superconductivity? Evidence for granular high- ¨ temperature superconductivity in water-treated graphite powder. Advanced Materials, 2012, 24(43), P. 5826–5831.

11. Lebedev S.G. Evidence of josephson-like behaviour of thin granular carbon films. International Review of Physics, 2008, 2(5), P. 312–328.

12. Felner I., Kopelevich Y. Magnetization measurement of a possible high-temperature superconducting state in amorphous carbon doped with sulfur. Phys. Rev. B, 2009, 79(23), P. 233409(1-4).

13. Ballestar A., Barzola-Quiquia J., et. al. Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite. New J. Phys., 2013, 15(5), P. 023024.

14. Uchoa B., Barlas Y. Superconducting states in pseudo-Landau levels of strained graphene. Phys. Rev. Lett., 2013, 111(4), P. 046604(1-5).

15. Lowell J., Rose-Innes A.C. Contact electrification. Adv. Phys., 1980, 29(6), P. 947–1023.

16. Duke C.B., Fabish T.J. Charge-induced relaxation in polymers. Phys. Rev. Lett., 1976, 37(16), P. 1075–1078.

17. Mikoushkin V.M., Shnitov V.V., Nikonov S.Yu., et al. Controlling graphite oxide bandgap width by reduction in hydrogen. Tech. Phys. Lett., 2011, 37(10), P. 942–945.

18. Aleksenskii A.E., Brunkov P.N., Dideikin A.T., et al. Single-layer graphene oxide films on a silicon surface. Tech. Phys., 2013, 58(11), P. 1614–1618.

19. Khairullin A.R., Nikolaeva M.N., Bugrov A.N. Resistance of the composite films based on polystyrene and graphene oxide. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 1055–1058.

20. Nikolaeva M., Boiko Y., Martynenkov A. Supramolecular structure and conductive properties of dielectric polymers in metal/polymer/metal systems. Int. J. Polym. Mat., 2013, 62(13), P. 706–710.

21. Nikolaeva M.N., Anan‘eva T.D., et al. Influence of chemical structure and chain length on conducting properties of dielectric polymers in metal/polymer/metal structures. Rus. J. Appl. Chem., 2013, 86(5), P. 756–759.

22. Nikolaeva M.N., Martynenkov A.A., et al. Resistance of dielectric polymer films with fillers in metal-polymer-metal systems. Rus. J. Appl. Chem., 2014, 87(5), P. 646–650.

23. Smirnov V.A., Arbuzov A.A., Shul’ga Yu.M., et al. Photoreduction of graphite oxide. Chemistry of high energies, 2011, 45(1), P. 60–64.


Review

For citations:


Nikolaeva M.N., Anan’eva T.D., Bugrov A.N., Dideikin A.T., Ivankova E.M. Correlation between structure and resistance of composites based on polystyrene and multilayered graphene oxide. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):266-271. https://doi.org/10.17586/2220-8054-2017-8-2-266-271

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)