Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle-based theranostic agents
https://doi.org/10.17586/2220-8054-2017-8-2-282-289
Abstract
Modern methods of cancer treatment include chemotherapy and radiotherapy, but they are often characterized by low efficacy and high toxicity. The effectiveness of cancer therapy is often limited by a lack of effective systems for drug delivery to the tumor site. Cerium oxide nanoparticles are able to act as radioprotectors and as radiosensitizers exhibiting selective toxicity in the tumor microenvironment, providing for their tremendous potential in treating cancer. However, methods for controlled delivery of CeO2 nanoparticles to the tumor have not been investigated nor described yet. In this article, we consider different approaches to the development of new ceria nanoparticle-based theranostic agents. Modification of polyelectrolyte microcapsules with nano-ceria appears to be the most promising method. Our design proposals are based on the synergistic pharmacological action of ceria-based nanomaterials and anticancer pharmaceuticals with the ability to control and visualize their sites of localization.
Keywords
About the Authors
N. R. PopovaRussian Federation
Institutskaya, 3, Pushchino 142290
A. L. Popov
Russian Federation
Institutskaya, 3, Pushchino 142290
A. B. Shcherbakov
Ukraine
Str. Zabolotnogo, 154, Kyiv D0368
V. K. Ivanov
Russian Federation
Leninsky av, 31, Moscow 119991; Lenin str., 36, Tomsk 634050
References
1. URL: http://www.cancer.gov/about-cancer/treatment/types/radiation-therapy.
2. Smart D.R. Physician Characteristics and Distribution in the U.S. IMV Medical Information Division, 2010.
3. Contreras J.L., Bilbao G., et al. Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the antiapoptotic Bcl-2 gene. Transplantation, 2011, 71, P. 1015–1023.
4. Rivera C., Voipio J., et al. The K/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature, 1999, 397, P. 251–255.
5. Ahn S., Jung S., Lee S. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules, 2013, 18 (5), P. 5858–5890.
6. Li J., Gupta S., Li C. Research perspectives: gold nanoparticles in cancer theranostics. Quant. Imaging Med. Surg., 2013, 3 (6), P. 284–291.
7. Liang H., Tian H., Deng M., Chen X. Gold Nanoparticles for Cancer Theranostics. Chinese J. Chem., 2015, 33 (9), P. 1001–1010.
8. Cooper D.R., Bekah D., Nadeau J.L. Gold nanoparticles and their alternatives for radiation therapy enhancement. Front. Chem., 2014, 2, P. 86.
9. Alqathami M., Blencowe A., et al. Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: A dosimetric study using a novel multi-compartment 3D radiochromic dosimeter. J. Phys.: Conf. Ser., 2013, 444 (1), P. 012025.
10. Yao M., Yao M., et al. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomater., 2014, 35 (28), P. 8197– 8205.
11. Maier-Hauff K., Ulrich F., et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 2011, 103 (2), P. 317–324.
12. Miladi I., Le Duc G., et al. Biodistribution of ultra-small gadolinium-based nanoparticles as theranostic agent: Application to brain tumors. J. Biomater. Appl., 2013, 28 (3), P. 385–394.
13. Maggiorella L., Barouch G., et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncology, 2012, 8 (9), P. 1167–1181.
14. Pottier A., Borghi E., Levy L. The future of nanosized radiation enhancers. Br. J. Radiol., 2015, 88, P. 0171.
15. Xu P., Maidment B., et al. Cerium Oxide Nanoparticles: A Potential Medical Countermeasure to Mitigate Radiation-Induced Lung Injury in CBA/J Mice. Radiat Res., 2016, 185 (5), P. 516–526.
16. Shcherbakov A.B., Zholobak N.M., Spivak N.Ya., Ivanov V.K. Advances and Prospects of Using Nanocrystalline Ceria in Cancer Theranostics. Russ. J. Inorg. Chem., 2014, 59, P. 1556–1575.
17. Heckert E., Karakoti A., Sudipta S., Self W.T., The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomater., 2008, 29 (18), P. 2705–2709.
18. Asati A., Santra S., Kaittanis C., Perez J.M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano, 2010, 4, P. 5321–5331.
19. Pirmohamed T., Dowding J.M., et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun., 2010, 46 (16), P. 2736–2738.
20. Popov A., Popova N., et al. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Mater. Sci. Eng. C, 2016, 68, P. 406–413.
21. Wason M.S., Colon J., et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomed., 2013, 9 (4), P. 558–569.
22. Zholobak N.M., Ivanov V.K., et al. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B, 2011, 102, P. 32–38.
23. Das S., Dowding J.M., et al. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Small, 2009, 5 (24), P. 2848–2856.
24. Popov A.L., Selezneva I.I., et al. Study of CeO2 nanoparticle interactions with biological cells and lipid bilayers. J. Biol. Phys. Chem., 2014, 14, P. 6–10.
25. Asati A., Santra S., et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed., 2009, 48, P. 2308– 2312.
26. von Montfort C., Alili L., Teuber-Hanselmann S., Brenneisen P. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage. Redox Biol., 2015, 4, P. 1–5.
27. Dowding J.M., Dosani T.,et al. Cerium oxide nanoparticles scavenge nitric oxide radical (NO). Chem. Commun., 2012, 48, P. 4896–4898.
28. Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun., 2007, 14, P. 1056–1058.
29. Zhang L., Jiang H., Selke M., Wang X. Selective cytotoxicity effect of cerium oxide nanoparticles under UV irradiation. J. Biomed. Nanotechnol., 2014, 10 (2), P. 278–286.
30. Briggs A., Corde S., et al. Cerium oxide nanoparticles: influence of the high-Z component revealed on radioresistant 9L cell survival under X-ray irradiation. Nanomed., 2013, 9 (7), P. 1098–1105.
31. Jewell C., Lynn D.M. Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Adv. Drug Deliv. Rev., 2008, 60 (9), P. 979–999.
32. Zhang X., Chabot D., et al. Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. ACS Appl. Mater. Interfaces, 2013, 5 (12), P. 5500–5507.
33. Palama I.E., Coluccia A.M., Gigli G. Uptake of imatinib-loaded polyelectrolyte complexes by BCR-ABL(+) cells: a long-acting drug- ` delivery strategy for targeting oncoprotein activity. Nanomed., 2014, 9 (14), P. 2087–2098.
34. Kuklo L.I., Tolstoy V.P. Successive ionic layer deposition of Fe3O4@HxMoO4 ·nH2O composite nanolayers and their superparamagnetic properties. Nanosyst. Phys. Chem. Math., 2016, 7 (6), P. 1050–1054.
35. Demina P.., Degtyareva .V., Kuzmicheva G.M., Bukreeva T.V. Polyelectrolyte microcapsules modified with nanoscale titanium dioxide for targeted drug delivery. Fine Chem. Technol., 2014, 9 (4), P. 73–79.
36. Gorin D.A., Portnov S.A., et al. Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. Phys. Chem. Chem. Phys., 2008, 10, P. 6899–6905.
37. Shchukin D.G., Sukhorukov G.B., Mohwald H. Smart Inorganic/Organic Nanocomposite Hollow Microcapsules. Angew. Chem. Int. Ed., 2003, 42, P. 4471–4475.
38. Nakamura M., Katagiri K., Koumoto K. Preparation of hybrid hollow capsules formed with Fe3O4 and polyelectrolytes via the layer-bylayer assembly and the aqueous solution process. J. Colloid Interface Sci., 2010, 341, P. 64–68.
39. Shirtach A.G., Antipov A.A., Shchukin D.G., Sukhorukov G.B. Remote activation of capsules containing Ag-nanoparticles and IR dye by laser light. Langmuir, 2004, 20, P. 6988–6992.
40. Ivanov V.K., Polezhaeva O.S., et al. Hydrothermal microwave synthesis of nanocrystalline cerium dioxide. Doklady Chem., 2009, 426 (2), P. 2131–2133.
41. Ivanova O., Shekunova T., et al. One-stage synthesis of ceria colloid solutions for biomedical use. Doklady Chem., 2011, 437 (2), P. 103–105.
42. Ivanov V.K., Polezhaeva O.S., et al. Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids. Russ. J. Inorg. Chem., 2010, 55 (3), P. 328–332.
43. Rajaonarivony M., Vauthier C., et al. Development of a new drug carrier made from alginate. J. Pharm. Sci., 1993, 82 (9), P. 912–917.
44. You J.-O., Peng C.-A. CalciumAlginate Nanoparticles Formed by Reverse Microemulsion as Gene Carriers. Macromol. Symp., 2005, 219 (1), P. 147–153.
45. Das R.K., Kasoju N., Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine, 2010, 6 (1), P. 153–160.
46. Chevalier Y., Bolzinger M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A, 2013, 439, P. 23–34.
47. Tikekar R.V., Pan Y., Nitin N. Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion. Food Res. Int., 2013, 51 (1), P. 370–377.
48. Gangwar R.K., Tomar G.B., et al. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J. Agric. Food Chem., 2013, 61 (40), P. 9632–9637.
49. Correa I., Plunkett T. Update on HER-2 as a target for cancer therapy: HER2/neu peptides as tumor vaccines for T cell recognition. Breast Cancer Res., 2001, 3, P. 399–403.
50. Yao J., Caballero O.L., et al. Tumor Subtype-Specific CancerTestis Antigens as Potential Biomarkers and Immunotherapeutic Targets for Cancers. Cancer Immunol. Res., 2014, 2, P. 37.
51. Celardo I., De Nicola M., Mandoli C. et al. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano, 2011, 5 (6), P. 4537–4549.
52. Dolgopolova E.A., Ivanova O.S., et al. Microwave-hydrothermal synthesis of gadolinium-doped nanocrystalline ceria in the presence of hexamethylenetetramine. Russ. J. Inorg. Chem., 2012, 57 (10), P. 1303–1307.
53. Shcherbakov A.B., Zholobak N.M., et al. Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria. Russ. J. Inorg. Chem., 2012, 57 (11), P. 1411–1418.
54. Ivanova O.S., Gasymova G.A., et al. Polyol-mediated synthesis of nanocrystalline ceria doped with neodymium, europium, gadolinium, and ytterbium. Doklady Chem., 2012, 443 (1), P. 82–85.
55. Zholobak N.M., Shcherbakov A.B., et al. Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells. RSC Adv., 2014, 4 (93), P. 51703–51710.
56. Dolgopolova E.A., Ivanova O.S., et al. Preparation of aqueous sols of Ce1−xGdxO2−δ, Y0.9Eu0.1VO4 and nanocomposites Ce1−xGdxO2−δ/Y0.9Eu0.1VO4 stabilized by polyacrylic acid. Russ. J. Inorg. Chem., 2013, 58 (11), P. 1287–1293.
57. Mamotyuk E.M., Klochkov V.K., et al. Radioprotective Effect of CeO2 and GdEuVO4 Nanoparticles in “In Vivo” Experiments. In Nanoscience Advances in CBRN Agents Detection, Information and Energy Security, 2015, P. 193–197.
58. Shcherbakov A.B., Zholobak N.M., et al. Cerium fluoride nanoparticles protect cells against oxidative stress. Mater. Sci. Eng. C, 2015, 50, P. 151–159.
59. Averchenko K.A., Kavok N.S., et al. Effect of inorganic nanoparticles and organic complexes on their basis on free-radical processes in some model systems. Biopolym. Cell, 2015, 31 (2), P. 138–145.
60. Moses W.W., Derenzo S.E. Cerium fluoride, a new fast, heavy scintillator. IEEE Trans. Nucl. Sci., 1989, 36 (1), P. 173–176.
Review
For citations:
Popova N.R., Popov A.L., Shcherbakov A.B., Ivanov V.K. Layer-by-layer capsules as smart delivery systems of CeO2 nanoparticle-based theranostic agents. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(2):282-289. https://doi.org/10.17586/2220-8054-2017-8-2-282-289