Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Flintstone as a nanocomposite material for photonics

https://doi.org/10.17586/2220-8054-2018-9-5-603-608

Abstract

Studying natural flintstone samples’ properties, including optical transparency and thermal conductivity, by various physical methods (X-ray diffraction, atomic force microscopy, optical microscopy, etc.) revealed that said specimens contain chalcedony nanoparticles bund into the complex hierarchial structure. 

About the Authors

P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



V. A. Maslov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



V. V. Voronov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



E. V. Chernova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



O. S. Kudryavtsev
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



V. G. Ralchenko
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



I. I. Vlasov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



A. S. Chislov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



M. N. Mayakova
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



E. G. Yarotskaya
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilov Street, Moscow, 119991



R. V. Gaynutdinov
Crystallography and Photonics Federal Research Center, Russian Academy of Sciences
Russian Federation

59 Leninskii Prospect, Moscow, 119991



P. A. Popov
Petrovskii State University
Russian Federation

14 Bezhitskaya Street, Bryansk, 241036



A. I. Zentsova
Petrovskii State University
Russian Federation

14 Bezhitskaya Street, Bryansk, 241036



References

1. Diffraction Nanophotonics. Ed. V. A. Soifer. Moscow, Fizmatlit, 2011, 680 p. (in Russian).

2. Optical properties of photonic structures: interplay of order and disorder. Ed. M.F. Limonov, R.M. De La Rue. Boca Raton, CRC/Taylor& Francis Group, 2012, XVII, 514 pp.

3. Wiersma D. The smallest random laser. Nature, 2000, 406, P. 132–133.

4. Garc´ıa P.D., Sapienza R., Lo’pez C. Photonic Glasses: A Step Beyond White Paint. Adv. Mater., 2010, 22, P. 12–19.

5. Barthelemy P., Bertolotti J., Wiersma D.S. A Le’vy flight for light. Nature, 2008, 453, P. 495–498.

6. Kouznetzov S.V., Yarotskya I.V., Fedorov P.P., Voronov V.V., Lavristchev S.V., Basiev T.T., Osiko V.V. Preparation of nanopowdered M1−xRxF2+x (M = Ca, Sr, Ba; R = Ce, Nd, Er, Yb) solid solutions. Rus. J. Inorg. Chem., 2007, 52, P. 315–320.

7. Fedorov P.P., Tkatchenko E.A., Kouznetzov S.V., Voronov V.V., Lavristchev S.V. Preparation of MgO nanoparticles. Inorg. Mater., 2007, 43, 5, P. 502-504.

8. Kuznetsov S.V., Fedorov P.P., Voronov V.V., Samarina K.S., Ermakov R.P., Osiko V.V. Synthesis of Ba4R3F17 (R stands for rare earth elements) powders and transparent compacts on their base. Rus. J. Inorg. Chem., 2010, 55(4), P. 484–493.

9. Kuznetsov S.V., Fedorov P.P., Voronov V.V., Osiko V.V. Synthesis of MgAl2O4 Nanopowders. Inorg. Mater., 2011, 47, P. 895–898.

10. Fedorov P.P., Kuznetsov S.V., Mayakova M.N., Voronov V.V., Ermakov R.P., Baranchikov A.E., Osiko V.V. Coprecipitation from aqueous solutions to prepare binary fluorides. Rus. J. Inorg. Chem., 2011, 56(10), P. 1525–1531.

11. Mayakova M.N., Kuznetsov S.V., Fedorov P.P., Voronov V.V., Ermakov R.P., Boldyrev K.N., Karban’ O.V., Uvarov O.V., Baranchikov A.E., Osiko V.V. Synthesis and characterization of fluoride xerogels. Inorg. Mater., 2013, 49, 11, P. 1152–1156.

12. Mayakova M.N., Luginina A.A., Kuznetsov S.V., Voronov V.V., Ermakov R.P., Baranchikov A.E., Ivanov V.K., Karban’ O.V., Fedorov P.P. Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueos solutions. Mendeleev Commun., 2014, 24(6), P. 360–362.

13. Niederberger M., Colfen H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. PhysChemChemPhys, 2006, 8, P. 3271–3287.

14. Fedorov P.P., Ivanov V.K. Cooperative formation of crystals by aggregation and intergrowth of nanoparticles. Dokl. Phys., 2011, 56(4), P. 205–207.

15. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented aggregation of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev., 2014, 83(12), P. 1204–1222.

16. Smol’yaninov N.A. Practical guide to mineralogy. Moscow, Nedra, 1955, 432 p.

17. Godovikov A.A., Ripinen O.I., Motorin S.G. Agates. Moscow, Nedra, 1987, 368 p (in Russian).

18. Zdorik T.B. Opal. Priroda, 1990, 10, P. 40–43 (in Russian).

19. Frolov V.T. Lithology. Book 1. Moscow, Lomonosov St.Univ., 1992, 336 p. (in Russian).

20. Spiridonov E.M., Ladygin V.M., Yanakieva D.Ya., Frolova Yu.V., Semikolennyh E.S. Agates in metavolcanics. Geological conditions, parameters and time of transformation of volcanites into mandelites with agates. Ed. Panchenko V.Ya. “MOLNET” Special issue of the magazine “Herald of RFBR”, Moscow, 2014, 72 p. (in Russian).

21. Popov P.A., Sidorov A.A., Kul’chenkov E.A., Anishchenko A.M., Avetissov I.Ch., Sorokin N.I., Fedorov P.P. Thermal conductivity and expansion of PbF2 single crystals. Ionics, 2017, 23, 1, P. 233–239.

22. Anderson J. H., Wickersheim K. A. Near infrared characterization of water and hydroxyl groups on silica surfaces. Surface science, 1964, 2, P. 252–260.

23. Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., Geim A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97, P. 18740.

24. Khomich A.A., Kudryavtsev O.S., Dolenko T.A., Shiryaev A.A., Fisenko A.V., Konov V.I., Vlasov I.I. Anomalous enhancement of nanodiamond luminescence upon heating. Laser Phys. Lett., 2017, 14, P. 025702.

25. Berman R. The thermal conductivities of some dielectric solids. Proc. R. Soc. Lond. A, 1951, 208, P. 90–108.

26. Sergeev O.A., Shashkov A.G., Umanskii A.S. Thermophysical properties of quartz glass. J. Eng. Phys., 1982, 43(6), P. 1375–1383.

27. Novitsky L.A., Kozhevnikov I.G. The thermophysical properties of materials at low temperatures (handbook). Mashinostroenie, Moscow, 1975 (in Russian).

28. Thermal Conductivity of Solids. Reference Book. Ed. by A.S. Okhotin. Moscow, Energoatomizdat, 1984 (Russian).

29. Popov P.A., Fedorov P.P., Kuznetsov S.V., Konyushkin V.A., Osiko V.V., Basiev T.T. Thermal conductivity of single crystals of Ca1−xYbxF2+x solid solutions. Dokl. Phys., 2008, 53(4), P. 198–200.

30. Sedletskiy I.D. Colloidal-dispersed mineralogy. Ed. A.E. Fersman. Moscow, Leningrad, Academy of Science of the USSR, 1945, 114 p. (in Russian).

31. Yushkin N.P., Askhabov A.M. et. al. Nanomineralogy. Ultra- and micro-dispersed state of mineral matter. St. Petersburg, Nauka, 2005, 581 p. (in Russian).


Review

For citations:


Fedorov P.P., Maslov V.A., Voronov V.V., Chernova E.V., Kudryavtsev O.S., Ralchenko V.G., Vlasov I.I., Chislov A.S., Mayakova M.N., Yarotskaya E.G., Gaynutdinov R.V., Popov P.A., Zentsova A.I. Flintstone as a nanocomposite material for photonics. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(5):603-608. https://doi.org/10.17586/2220-8054-2018-9-5-603-608

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)