The solubility of sodium and potassium fluorides in strontium fluoride
https://doi.org/10.17586/2220-8054-2017-8-6-830-834
Abstract
The phase diagram of the NaF–SrF2 system was studied by thermal analysis and X-ray powder diffraction analysis with the determination of the chemical composition. The system was found to be of the eutectic type. The eutectic co-ordinates are 853 ◦C, 32 mol % SrF2. A narrow range of the existence of solid solution Sr1−xNaxF2−x was established. The NaF solubility reaches a maximal value of x = 0.035 at eutectic temperature. The solubility of KF in SrF2 is very low.
Keywords
About the Authors
P. P. FedorovRussian Federation
Moscow, 119991; Saransk, 430005
M. N. Mayakova
Russian Federation
Moscow, 119991
V. A. Maslov
Russian Federation
Moscow, 119991
A. E. Baranchikov
Russian Federation
Moscow, 119991
V. K. Ivanov
Russian Federation
Moscow, 119991
A. A. Pynenkov
Russian Federation
Saransk, 430005
M. A. Uslamina
Russian Federation
Saransk, 430005
K. N. Nishchev
Russian Federation
Saransk, 430005
References
1. Fedorov P.P., Maykova M.N., et al. Phase diagram of the NaF-CaF2 system and the electrical conductivity of a CaF2-based solid solution. Russian J. Inorg. Chem., 2016, 61 (11), P. 1472–1478.
2. Sobolev B.P. The Rare Earth Trifluorides. P.1. The High-Temperature Chemistry of the Rare Earth Trifluorides. Barcelona 2000, 520 pp.
3. Fedorov P.P., Osiko V.V. Crystal Growth of Fluorides. In Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials. John Wiley & Son, Ltd. 2005, P. 339–356.
4. Basiev T.T., Orlovskii Yu.V., et al. Continuous tunable cw lasing near 2.75 m in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electronics, 2006, 36 (7), P. 591–594.
5. Alimov O.K., Basiev T.T., et al. Investigation of Nd3+ ions spectroscopic and laser properties in SrF2 fluoride single crystal. Optical Materials, 2012, 34 (5), P. 799–802.
6. Doroshenko M.E., Demidenko A.A., et al. Progress in fluoride laser ceramics. Phys. Stat. Solidi C, 2013, 10 (6), P. 952–957.
7. Rozhnova Yu.A., Luginina A.A., et al. White light luminophores based on Yb3+/Er3+/Tm3+ – coactivated strontium fluoride powders. Mat. Chem. Phys., 2014, 148, P. 201–207.
8. Fedorov .P., Luginina A.A., Kuznetsov S.V., Osiko V.V. Nanofluorides. J. Fluorine Chem., 2011, 132 (12), P. 1012–1039.
9. Luginina A.A., Fedorov P.P., et al. Synthesis of ultrafine fluorite Sr1−xNdxF2+x powders. Inorg. Mater., 2012, 48 (5), P. 531–538.
10. Mayakova M.N., Luginina A.A., et al. Synthesis of SrF2–YF3 nanopowders by co-precipitation from aqueos solutions. Mendeleev Communications, 2014, 24 (6), P. 360–362.
11. Rozhnova Yu.A., Kuznetsov S.V., et al. New Sr1−x−yRx(NH4)yF2+x−y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Math. Chem. Phys., 2016, 172, P. 150–157.
12. Yagoub M.Y.A., Swart H.C., et al. Surface characterization and photoluminescence properties of Ce3+, Eu Co-doped SrF2 nanophosphor. Materials, 2015, 8, P. 2361–2375.
13. Sun J., Xian J., Zhang X., Du H. Hydrothermal synthesis of SrF2:Yb3+/Er3+ micro-/nanocrystals with multiform morphologies and upconversion properties. J. Rare Earth, 2011, 29, P. 32–38.
14. Sun J., Xian J., Du H. Facile synthesis of well-dispersed SrF2:Yb3+/Er3+ upconversion nanocrystals in oleate complex systems. Appl. Surf. Sci., 2011, 257, P. 3592–3595.
15. Ritter B., Krahl T., Scholz G., Kemnitz E. Local structures of solid solutions Sr1xYxF2+x (x = 0 0.5) with fluorite structure prepared by SolGel and mechanochemical syntheses. J. Phys. Chem. C, 2016, 120, P. 8992–8999.
16. Fedorov P.P., Luginina A.A., Popov A.I. Transparent oxyfluoride glass ceramics. J. Fluorine Chem., 2015, 172, P. 22–50.
17. Renaud E., Robelin Ch., Gheribi A.E., Chartrand P. Thermodynamic evaluation and optimization of the (LiF + NaF + KF + MgF2 + CaF2 + SrF2) system. J. Chem. Thermodynamics, 2011, 43, P. 1286–1298.
18. Bukhalova G.A. The system Na, Sr, F, Cl. Izv. AN SSSR, Sektor fiz.-khim. analiza, 1955, 26, P. 138–146 (in Russian).
19. Berezhnaya V.T., Bukhalova G.A. Ternary systems of strontium fluoride with fluorides of alkaline metals. Zh. Neorg. Khimii, 1960, 5 (4), P. 925–929 (in Russian).
20. Cantor S. Freezing point depressions in sodium fluoride. Effect of alkaline earth fluorides. J. Phys. Chem., 1961, 65, P. 2208–2210.
21. Delbove F. Application de la method cryometrique a haute temperature a letude de la formation de solutions solides dans les fluorures alcalino-terreux, a la limite de dilution infinite. Silicates Industriels, 1967, 32, P. 2659–2667.
22. Bollmann W., Go¨rlich P., Hauk W., Mothes H. Ionic conduction of pure and doped CaF2 and SrF2 crystals. Phys. stat. sol. (a), 1970, 2, P. 157–170.
23. Fedorov P.P., Kuznetsov S.V., et al. Coprecipitation from aqueous solutions to prepare binary fluorides. Russian J. Inorg. Chem., 2011, 56 (10), P. 1525–1531.
24. Fedorov. P., Mayakova M.N., et al. Co-precipitation of yttrium and barium fluorides from aqueous solutions. Mater. Res. Bull., 2012, 47, P. 1794–1799.
25. Fedorov P.P., Mayakova M.N., et al. Synthesis of CaF2–YF3 nanopowders by co-precipitation from aqueos solutions. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (4), P. 462–470.
26. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V. Oriented aggregation of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev., 2014, 83 (12), P. 1204–1222.
27. Fedorov P.P. Third law of thermodynamics as applied to phase diagrams. Russ. J. Inorg. Chem., 2010, 55 (11), P. 1722–1739.
28. Fedorov P.P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russ. J. Inorg. Chem., 2000, 45 (3), P. 268–291.
29. Fedorov P.P., Kuznetsov S.V., Osiko V.V. Elaboration of nanofluorides and ceramics for optical and laser applications. In Photonic & Electronic Properties of Fluoride Materials, Elsevier, 2016, P. 7–31.
Review
For citations:
Fedorov P.P., Mayakova M.N., Maslov V.A., Baranchikov A.E., Ivanov V.K., Pynenkov A.A., Uslamina M.A., Nishchev K.N. The solubility of sodium and potassium fluorides in strontium fluoride. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):830-834. https://doi.org/10.17586/2220-8054-2017-8-6-830-834