Two facile routes for functionalization of WS2 nanotubes with silver nanoparticles
https://doi.org/10.17586/22208054201785628634
Abstract
Silvercoated WS2 nanotubes (NTWS 2) were successfully synthesized via two wet chemistry techniques. The first employs spontaneous silver nanoparticle growth resulting from an interaction of disulfide nanotubes with AgNO3 in aqueous suspensions at 100 C without any additional reducing agents or stabilizers. The second utilizes [Ag(NH3)2]OH complex to produce silver nanoparticles upon thermal decomposition. Both techniques are capable of producing AgNTWS 2 nanocomposites containing 5–60 nm silver nanoparticles tightly attached to the nanotubes’ surfaces. The hexagonal arrangement of sulfur atoms of the outer WS2 layer was postulated to facilitate crystallization of silver nanocrystals with hexagonal crystallographic system (4H–Ag). The physicalchemical model for spontaneous AgNP formation is proposed.
Keywords
About the Authors
A. Yu. PolyakovRussian Federation
173 Leninskiye gory, Moscow, 119991
V. A. Lebedev
Russian Federation
173 Leninskiye gory, Moscow, 119991
L. Yadgarov
Israel
P. O. Box 39040, Tel Aviv 6997801
E. A. Goodilin
Russian Federation
173 Leninskiye gory, Moscow, 119991
References
1. Yang J., Liu H. Metalbased composite nanomaterials. Springer International Publishing, Cham, 2015, 259 p.
2. Chin K.C., Gohel A., Chen W.Z., Elim H.I., Ji W., Chong G.L., Sow C.H., Wee A.T.S. Gold and silver coated carbon nanotubes: An improved broadband optical limiter. Chem. Phys. Lett., 2005, 409 (1–3), P. 85–88.
3. Zhang J., Zhang X., Lai C., Zhou H., Zhu Y. Silverdecorated aligned CNT arrays as SERS substrates by high temperature annealing. Optics Express, 2014, 22(18), P. 21157–21166.
4. SanlesSobrido M., Rodr´ıguezLorenzo L., LorenzoAbalde S., Gonza´lezFerna ´ndez A´ ., CorreaDuarte M.A., AlvarezPuebla R.A., LizMarz ´an L.M. Labelfree SERS detection of relevant bioanalytes on silvercoated carbon nanotubes: The case of cocaine. Nanoscale, 2009, 1(1), P. 153–158.
5. Chen Y.C., Young R.J., Macpherson J. V., Wilson N.R. Silverdecorated carbon nanotube networks as SERS substrates. J. Raman Spectrosc., 2011, 42(6), P. 1255–1262.
6. Chang W.T., Hsueh Y.C., Huang S.H., Liu K.I., Kei C.C., Perng T.P., Lin C., Chen Z. Fabrication of Agloaded multiwalled TiO2 nanotube arrays and their photocatalytic activity. J. Mater. Chem. A, The Royal Society of Chemistry, 2013, 1(6), P. 1987–1991.
7. Wu F., Hu X., Fan J., Liu E., Sun T., Kang L., Hou W., Zhu C., Liu H. Photocatalytic Activity of Ag/TiO2 Nanotube Arrays Enhanced by Surface Plasmon Resonance and Application in Hydrogen Evolution by Water Splitting. Plasmonics, 2013, 8(2), P. 501–508.
8. Yan Y., Sun H., Yao P., Kang S.Z., Mu J. Effect of multiwalled carbon nanotubes loaded with Ag nanoparticles on the photocatalytic degradation of rhodamine B under visible light irradiation. Appl. Surf. Sci., 2011, 257(8), P. 3620–3626.
9. Liu W., Feng Y., Tang H., Yuan H., He S., Miao S. Immobilization of silver nanocrystals on carbon nanotubes using ultrathin molybdenum sulfide sacrificial layers for antibacterial photocatalysis in visible light. Carbon, 2016, 96, P. 303–310.
10. Cui S., Pu H., Mattson E.C., Lu G., Mao S., Weinert M., Hirschmugl C.J., GajdardziskaJosifovska M., Chen J. Ag nanocrystal as a promoter for carbon nanotubebased roomtemperature gas sensors. Nanoscale, The Royal Society of Chemistry, 2012, 4(19), P. 5887–5894.
11. Cui S., Pu H., Lu G., Wen Z., Mattson E.C., Hirschmugl C., GajdardziskaJosifovska M., Weinert M., Chen J. Fast and Selective RoomTemperature Ammonia Sensors Using Silver NanocrystalFunctionalized Carbon Nanotubes. ACS Appl. Mater. Interfaces, 2012, 4(9), P. 4898–4904.
12. Liu Y., Wu G., Cui Y. Ag/CNTcatalyzed hydroamination of activated alkynes with aromatic amines. Appl. Organomet. Chem., 2013, 27(4), P. 206–208.
13. Seo Y., Hwang J., Kim J., Jeong Y., Hwang M.P., Choi J. Antibacterial activity and cytotoxicity of multiwalled carbon nanotubes decorated with silver nanoparticles. Int. J. Nanomedicine, 2014, 9, P. 4621–4629.
14. Dinh N.X., Quy N. Van, Huy T.Q., Le A.T. Decoration of Silver Nanoparticles on Multiwalled Carbon Nanotubes: Antibacterial Mechanism and Ultrastructural Analysis. J. Nanomater., 2015, 2015, P. 1–11.
15. Garc´ıa B.O., Kharissova O.V., Rasika Dias H.V., Aguirre T. F.S., Hern´andez J.S. Nanocomposites with antibacterial properties using CNTs with magnetic nanoparticles. Nanosyst. Physics, Chem. Math., 2016, 7(1), P. 161–168.
16. Castle A.B., GraciaEspino E., NietoDelgado C., Terrones H., Terrones M., Hussain S. HydroxylFunctionalized and NDoped Multiwalled Carbon Nanotubes Decorated with Silver Nanoparticles Preserve Cellular Function. ACS Nano, 2011, 5 (4), P. 2458–2466.
17. Tenne R. Inorganic nanotubes and fullerenelike nanoparticles. J. Mater. Res., 2006, 21(11), P. 2726–2743.
18. Margolin A., Rosentsveig R., AlbuYaron A., PopovitzBiro R., Tenne R. Study of the growth mechanism of WS2 nanotubes produced by a fluidized bed reactor. J. Mater. Chem., 2004, 14(4), P. 617–624.
19. Viˇsic B., Panchakarla L.S., Tenne R. Inorganic Nanotubes and Fullerenelike Nanoparticles at the Crossroads between SolidState Chemistry and Nanotechnology. J. Am. Chem. Soc., 2017, 139(37), P. 12865–12878.
20. Divon Y., Levi R., Garel J., Golberg D., Tenne R., Ya’akobovitz A., Joselevich E. Torsional Resonators Based on Inorganic Nanotubes. Nano Lett., 2017, 17(1), P. 28–35.
21. Qin F., Shi W., Ideue T., Yoshida M., Zak A., Tenne R., Kikitsu T., Inoue D., Hashizume D., Iwasa Y. Superconductivity in a chiral nanotube. Nat. Commun., 2017, 8, P. 14465.
22. Tsverin Y., PopovitzBiro R., Feldman Y., Tenne R., Komarneni M.R., Yu Z., Chakradhar A., Sand A., Burghaus U. Synthesis and characterization of WS2 nanotube supported cobalt catalyst for hydrodesulfurization. Mater. Res. Bull., 2012, 47(7), P. 1653–1660.
23. Komarneni M.R., Yu Z., Burghaus U., Tsverin Y., Zak A., Feldman Y., Tenne R. Characterization of NiCoated WS2 Nanotubes for Hydrodesulfurization Catalysis. Isr. J. Chem., 2012, 52(11–12), P. 1053–1062.
24. Tsverin Y., Livneh T., Rosentsveig R., Zak A., Pinkas I., Tenne R. Photocatalysis with hybrid Cocoated WS2 nanotubes. Nanomater. Energy, 2013, 2(1), P. 25–34.
25. Viˇsic B., Cohen H., PopovitzBiro R., Tenne R., Sokolov V.I., Abramova N. V., Buyanovskaya A.G., Dzvonkovskii S.L., Lependina O.L. Direct Synthesis of Palladium Catalyst on Supporting WS2 Nanotubes and its Reactivity in CrossCoupling Reactions. Chem. An Asian J., 2015, 10(10), P. 2234–2239.
26. Sedova A., Leitus G., Feldman Y., Bendikov T., PopovitzBiro R., Khodorov S., Dodiuk H., Kenig S., Tenne R. Synthesis of magnetic FeWO4 nanoparticles and their decoration of WS2 nanotubes surface. J. Mater. Sci., 2017, 52(11), P. 6376–6387.
27. Ksenevich V.K., Gorbachuk N.I., Viet H., Shuba M.V., Kuzhir P.P., Maksimenko S.A., Paddubskaya A.G., Valusis G., Wieck A.D., Zak A., Tenne R. Electrical properties of carbon nanotubes/WS2 nanotubes (nanoparticles) hybrid films. Nanosyst. Physics, Chem. Math., 2016, 7(1), P. 37–43.
28. Daoush W.M., Hong S.H. Synthesis of multiwalled carbon nanotube/silver nanocomposite powders by chemical reduction in aqueous solution. J. Exp. Nanosci., 2013, 8(5), P. 742–751.
29. Yamada T., Hayashi Y., Takizawa H. Synthesis of Carbon Nanotube/Silver Nanocomposites by Ultrasonication. Mater. Trans., 2010, 51(10), P. 1769–1772.
30. Maley J., Schatte G., Yang J., Sammynaiken R. Spontaneous AgNanoparticle Growth at SingleWalled Carbon Nanotube Defect Sites: A Tool for In Situ Generation of SERS Substrate. J. Nanotechnol., 2011, 2011, P. 1–7.
31. Shahar C., Levi R., Cohen S.R., Tenne R. Gold Nanoparticles as Surface Defect Probes for WS 2 Nanostructures. J. Phys. Chem. Lett., 2010, 1(2), P. 540–543.
32. Polyakov A.Y., Yadgarov L., PopovitzBiro R., Lebedev V.A., Pinkas I., Rosentsveig R., Feldman Y., Goldt A.E., Goodilin E.A., Tenne R. Decoration of WS2 nanotubes and fullerenelike MoS2 with gold nanoparticles. J. Phys. Chem. C, 2014, 118(4), P. 2161–2169.
33. Polyakov A.Y., Nesterov A. V, Goldt A.E., Zubyuk V., Dolgova T., Yadgarov L., Visic B., Fedyanin A.A., Tenne R., Goodilin E.A. Optical properties of multilayer films of nanocomposites based on WS2 nanotubes decorated with gold nanoparticles. J. Phys. Conf. Ser., 2015, 643, P. 012046.
34. Tremel W., Spetter D., Hoshyargar F., Sahoo J., Tahir M.N., Branscheid R., Barton B., Panth¨ofer M., Kolb U. Surface Defects as a Tool to Solubilize and Functionalize WS2 Nanotubes. Eur. J. Inorg. Chem., 2017, 15, P. 2190–2194.
35. Zak A., Ecker L.S., Efrati R., Drangai L., Fleischer N., Tenne R. Largescale Synthesis of WS2 Multiwall Nanotubes and their Dispersion, an Update. J. Sensors Transducers, 2011, 12 (Special Issue), P. 1–10.
36. Sarycheva A.S., Ivanov V.K., Baranchikov A.E., Savilov S. V., Sidorov A. V., Goodilin E.A., Grigorieva A. V., Maksimov G. V., Goodilin E.A., Egorov A. V., Brazhe A.R., Parshina E.Y., Luneva O.G., Maksimov G. V., Tretyakov Y.D. Microbead silica decorated with polyhedral silver nanoparticles as a versatile component of sacrificial gel films for SERS applications. RSC Adv., 2015, 5(110), P. 90335–90342.
37. Neas D., Klapetek P. Gwyddion: an opensource software for SPM data analysis. Open Phys., 2012, 10(1), P. 181–188.
38. ICDD Products PDF2 [Electronic resource], URL: http://www.icdd.com/products/pdf2.htm (accessed: 06.10.2017).
39. Novgorodova M.I., Gorshkov A.I., Mokhov A. V. Native Silver and Its New Structural Modifications. Zap. Vsesoyuznogo Mineral. Obs., 1979, 108, P. 552–563.
40. Rodr´ıguezLe ´on E., I˜niguezPalomares R., Navarro R., HerreraUrbina R., T´anori J., I˜niguezPalomares C., Maldonado A. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett., 2013, 8(1), P. 318.
41. Liu X., Luo J., Zhu J. Size effect on the crystal structure of silver nanowires. Nano Lett., 2006, 6(3), P. 408–412.
42. Chakraborty I., Shirodkar S.N., Gohil S., Waghmare U. V, Ayyub P. A stable, quasi2D modification of silver: optical, electronic, vibrational and mechanical properties, and first principles calculations. J. Phys. Condens. Matter, 2014, 26(2), P. 25402.
43. CrystalMaker Structures Libraries: Materials Strutures [Electronic resource], URL: http://crystalmaker.com/library/chalcogenides.html (accessed: 06.10.2017).
44. Jette E.R., Foote F. Precision Determination of Lattice Constants. J. Chem. Phys., 1935, 3(10), P. 605–616.
45. Crystallography Open Database [Electronic resource], URL: http://www.crystallography.net/cod/index.php (accessed: 05.10.2017).
46. Jaegermann W., Ohuchi F.S., Parkinson B.A. Interaction of Cu, Ag and Au with van der Waals faces of WS2, and SnS2. Surf. Sci., 1988, 201(1–2), P. 211–227.
47. Goia D. V., Matijevi´c E. Preparation of monodispersed metal particles. New J. Chem., 1998, 22 (11), P. 1203–1215.
48. Reiss H., Heller A. The absolute potential of the standard hydrogen electrode: a new estimate. J. Phys. Chem., 1985, 89(20), P. 4207–4213.
49. Gorup L.F., Longo E., Leite E.R., Camargo E.R. Moderating effect of ammonia on particle growth and stability of quasimonodisperse silver nanoparticles synthesized by the Turkevich method. J. Colloid Interface Sci., 2011, 360(2), P. 355–358.
Review
For citations:
Polyakov A.Yu., Lebedev V.A., Yadgarov L., Goodilin E.A. Two facile routes for functionalization of WS2 nanotubes with silver nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):628–634. https://doi.org/10.17586/22208054201785628634