The effect of microtube formation with walls, containing Fe3O4 nanoparticles, via gas-solution interface technique by hydrolysis of the FeCl2 and FeCl3 mixed solution with gaseous ammonia
https://doi.org/10.17586/2220-8054-2017-8-4-471-475
Abstract
In this work, microtubes with walls, containing Fe3O4 nanoparticles, obtained by “rolling up” of the interfacial films, were synthesized by the gas-solution interface technique (GSIT), using a mixture of aqueous solutions of FeCl2 and FeCl3 and gaseous ammonia. The synthesized microtubes were characterized by Scanning Electronic Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), X-Ray Diffraction analysis (XRD) and magnetization measurements. It was established that under optimal synthetic conditions the microtube diameter ranged from 5 to 10 µm, the length was up to 120 µm and the thickness of walls was about 0.6 µm, the walls themselves being formed by nanoparticles with a size of about 10 nm. The reversible hysteresis behavior, the low coercive force, the low remanence magnetization and the approaching of Mr/Ms to zero, confirmed the superparamagnetic nature of the synthesized microtubes. A hypothesis on the formation of microtubes by the gas-solution interface technique was proposed.
About the Authors
V. E. GurenkoRussian Federation
198504; 26 University Pr.; St. Peterhof; Saint Petersburg
V. P. Tolstoy
Russian Federation
198504; 26 University Pr.; St. Peterhof; Saint Petersburg
L. B. Gulina
Russian Federation
198504; 26 University Pr.; St. Peterhof; Saint Petersburg
References
1. Hong-Ying Su, Chang-Qiang Wu, Dan-Yang Li, Hua Ai. Self-assembled superparamagnetic nanoparticles as MRI contrast agents. A review. Chinese Physics B, 2015, 24, P. 127506.
2. Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO<sub>3</sub> nanoparticle formation. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(5), P. 696–705.
3. Almjasheva O.V., Gusarov V.V. Prenucleation formations in control over synthesis of CoFe<sub>2</sub>O<sub>4</sub> nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89, P. 851–855.
4. Popkov V.I., Almjasheva O.V. Formation mechanism of YFeO<sub>3</sub> nanoparticle under the hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(5), P. 703–708.
5. Tugova E.A., Zvereva I.A. Formation mechanism of GdFeO<sub>3</sub> nanoparticles under the hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(6), P. 851–856.
6. Zherebtsov D.A., Mirasov V.Sh., Kleschev D.G., Polyakov E.V. Nanodisperse oxide compounds of iron formed in the FeSO<sub>4</sub>-KOH-H<sub>2</sub>O-H<sub>2</sub>O<sub>2</sub> system (4.0 pH 13.0). Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(4), P. 593–604.
7. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO<sub>3</sub> via the Glycine-Nitrate Combustion Method. Russian Journal of General Chemistry, 2016, 86(10), P. 2256–2262.
8. Lomanova N.A., Pleshakov I.V., Volkov M.P., Gusarov V.V. Magnetic properties of Aurivillius phases Bim<sup>+1</sup>Fem−<sub>3</sub>Ti<sub>3</sub>O<sub>3m+3</sub> with m = 5.5, 7, 8. Materials Science and Engineering: B, 2016, 214, P. 51–56.
9. Yang C., Wu J., and Hou Y. Fe<sub>3</sub>O<sub>4</sub> nanostructures: synthesis, growth mechanism, properties and applications. Chemical Communications, 2011, 47(18), P. 5130–5141.
10. Kuklo L.I., Tolstoy V.P. Successive ionic layer deposition of Fe<sub>3</sub>O<sub>4</sub>@H<sub>x</sub>MoO<sub>4</sub>·<sub>n</sub>H<sub>2</sub>O composite nanolayers and their superparamagnetic properties. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 1050–1054.
11. Hudson R. Coupling the magnetic and heat dissipative properties of Fe<sub>3</sub>O<sub>4</sub> particles to enable applications in catalysis, drug delivery, tissue destruction and remote biological interfacing. RSC Advances, 2016, 6, P. 4262–4270.
12. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 1981, 17(2), P. 1247–1248.
13. Qian G., Aiwu Zh., Hongyan G. et al. Controlled synthesis of Au–Fe<sub>3</sub>O<sub>4</sub> hybrid hollow spheres with excellent SERS activity and catalytic properties. Dalton Transactions, 2014, 43, P. 7998–8006.
14. Shan J., Wang L., Yu H., Ji J., Amer W. A., Chen Y., Jing G., Khalid H., Akram M., Abbasi N. M. Recent progress in Fe<sub>3</sub>O<sub>4</sub>based magnetic nanoparticles: from synthesis to application. Materials Science and Technology, 2016, 32(6), P. 602–614.
15. Chao X., Xiaolong L., Honglian D. The Synthesis of Size-Adjustable Superparamagnetism Fe<sub>3</sub>O<sub>4</sub> Hollow Microspheres. Nanoscale Research Letters, 2017, 12, P. 234.
16. Fei-Xiang M., Han H., Hao Bin W., Cheng-Yan X., Zhichuan X., Liang Zh., Xiong W. Lou. Formation of Uniform Fe<sub>3</sub>O<sub><sub>4</sub></sub> Hollow Spheres Organized by Ultrathin Nanosheets and Their Excellent Lithium Storage Properties. Advanced Materials, 2015, 27, P. 4097–4101.
17. Goswami M.M., Dey Ch., Bandyopadhyay A., Sarkar D., Ahir M. Micelles-driven magnetite (Fe<sub>3</sub>O<sub>4</sub>) hollow spheres and a study on AC magnetic properties for hyperthermia application. Journal of Magnetism and Magnetic Materials, 2016, 417, P. 376–381.
18. Wei D., Lin Hu, Zhigao Sh. et al. Magneto-acceleration of Ostwald ripening in hollow Fe<sub>3</sub>O<sub>4</sub> nanospheres. CrystEngComm, 2016, 18, P. 6134.
19. Tolstoy V.P., Gulina L.B. New way of As<sub>2</sub>S<sub>3</sub> microtubules preparation by roll up thin films synthesized at the air-solution interface. Journal of Nano- and Electronic Physics, 2013, 5(1), P. 01003-1-01003-3.
20. Tolstoy V.P., Gulina L.B. Synthesis of birnessite structure layers at the solution-air interface and the formation of microtubules from them. Langmuir, 2014, 30(28), P. 8366–8372.
21. Tolstoy V.P., Gulina L.B. Ozone interaction with manganese acetate solution. Formation of H<sub>x</sub>MnO<sub>2</sub>·<sub>n</sub>H<sub>2</sub>O layers and microtubes based on them. Russian Journal of General Chemistry, 2013, 83(9), P. 1635-1639.
22. Gulina L.B., Sch¨afer M., Privalov A.F., Tolstoy V.P., Murin I.V., Vogel M. Synthesis and NMR investigation of 2D nanocrystals of the LaF<sub>3</sub> doped by SrF<sub>2</sub>. Journal of Fluorine Chemistry, 2016, 188, P. 185–190.
23. Gulina L.B., Tolstoy V.P., Kasatkin I.A., Petrov Y.V. Facile synthesis of LaF<sub>3</sub> strained 2D nanoparticles and microtubes at solution-gas interface. Journal of Fluorine Chemistry, 2015, 180, P. 117–121.
24. Gulina L.B., Tolstoy V.P. Reaction of gaseous hydrogen fluoride with the surface of lanthanum chloride solution to form LaF<sub>3</sub>·<sub>n</sub>H<sub>2</sub>O film and microtubes thereof. Russian Journal of General Chemistry, 2014, 84(8), P. 1472–1475.
25. Semishchenko K., Tolstoy V., Lobinsky A. A Novel Oxidation-Reduction Route for Layer-by-Layer Synthesis of TiO<sub>2</sub> Nanolayers and Investigation of Its Photocatalytical Properties. Journal of Nanomaterials, 2014, Article ID 632068, 7 pp.
26. Kang Y.S., Risbud S., Rabolt J.F. and Stroeve P. Synthesis and Characterization of Nanometer-Size Fe<sub>3</sub>O<sub>4</sub> and γ-Fe<sub>2</sub>O<sub>3</sub> Particles. Chemistry of Materials, 1996, 8(9), P. 2209–2211.
27. Krasilin A.A., Suprun A.M., Ubyivovk E.V., Gusarov V.V. Morphology vs. chemical composition of single Ni-doped hydrosilicate nanoscroll, Materials Letters, 2016, 171, P. 68–71.
28. Krasilin A.A., Gusarov V.V. Control over morphology of magnesium-aluminum hydrosilicate nanoscrolls, Russian Journal of Applied Chemistry, 2015, 88(12), P. 1928–1935.
Review
For citations:
Gurenko V.E., Tolstoy V.P., Gulina L.B. The effect of microtube formation with walls, containing Fe3O4 nanoparticles, via gas-solution interface technique by hydrolysis of the FeCl2 and FeCl3 mixed solution with gaseous ammonia. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):471-475. https://doi.org/10.17586/2220-8054-2017-8-4-471-475