Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Kinetic coefficients of semiconductor superlattices in high-frequency electromagnetic fields

https://doi.org/10.17586/2220-8054-2017-8-6-740-745

Abstract

Kinetic coefficients of semiconductor superlattice are obtained from the Boltzmann transport equation with Bhatnagar–Gross–Krook (BGK) collision term and Poisson equation. Using the universal analytic procedure, we found kinetic coefficient in the quasistatic limit starting from the exact solution of the Boltzmann transport equation. It is shown that the Einstein relation for the diffusion coefficient is applicable only for weak fields and it is not valid in the general case. As a consequence, a drift-diffusion model of miniband transport in the case of strong dc and ac fields should be corrected, taking into account the kinetic coefficients obtained from the Boltzmann equation.

About the Authors

A. V. Shorokhov
National Research Mordovia State University
Russian Federation

Bolshevistskaya, 68, Saransk, 430005



N. S. Prudskikh
National Research Mordovia State University
Russian Federation

Bolshevistskaya, 68, Saransk, 430005



M. B. Semenov
Penza State University
Russian Federation

Krasnaya, 40, Penza, 440026



V. D. Krevchik
Penza State University
Russian Federation

Krasnaya, 40, Penza, 440026



M. A. Pyataev
National Research Mordovia State University
Russian Federation

Bolshevistskaya, 68, Saransk, 430005



S. E. Golovatyuk
National Research Mordovia State University
Russian Federation

Bolshevistskaya, 68, Saransk, 430005



Tian-Rong Li
Institute of Functional and Environmental Materials, Lanzhou University
China

Lanzhou



Yu-Hua Wang
Institute of Functional and Environmental Materials, Lanzhou University
China

Lanzhou



References

1. Ignatov A. A., Shashkin V. I. Bloch oscillation of electrons and instabilities of space-charge waves in semiconductor superlattices. Sov. Phys. JETP, 1987, 66, P. 526–530.

2. Ignatov A. A., Shashkin V. I. Diffusion coefficient of heated carries, spectrum of space-charge waves, and characteristic instability frequencies of semiconductor superlattices. Sov. Phys. Semicond, 1984, 18, P. 721–724.

3. Ignatov A. A., Shashkin V. I. Quasihydrodynamdice description of the instability of space charge waves and impedance of bounded superlattice structures. Sov. Phys. Semicond, 1987, 21, P. 973–976.

4. Bonilla L. L., Alvaro M., Carretero M. Theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices. Physical Review B, 84, 2011, P. 155316 1–17.

5. Bonilla L. L., Escobedo R., Perales Á. Generalized drift-diffusion model for miniband superlattices. Physical Review B, 2003, 68, P. 2413041-4(R).

6. lvaro M., Carretero M., Bonilla L. L. Numerical method for hydrodynamic modulation equations describing Bloch oscillations in semiconductor superlattices. Journal of Computational Physics, 2012, 231, P. 4499–4514.

7. Bryksin V.V., Kleinert P. Theory of quantum diffusion in biased semiconductors. J. Phys.: Condens. Matter, 2003, 15, P. 1415-1425.

8. Shorokhov A. V., Aleksev K. N. High-frequency absorption and gain in superlattices: Semiquasistatic approach. Physica E, 2006, 33, P. 284–295.

9. Shorokhov A. V., Aleksev K. N. Quantum Derivatives and Terahertz Gain in a Superlattice. JETP, 2006, 105, P. 198–200.

10. Winnerl S., Schomburg E., Grenzer J., Regl H.-J., Ignatov A. A., Semenov A. D., Renk K. F., Pavel’ev D. G., Koschurinov Yu., Melzer B., Ustinov V., Ivanov S., Schaposchnikov S., Kop’ev P. S. Quasistatic and dynamic interaction of high-frequency fields with miniband electrons in semiconductor superlattices. Physical Review B, 1997, 56, P. 10303–10307.

11. Suris R. A. and Shchamkhalova B. S. Heating of electrons in superlattice semiconductors. Sov. Phys. Semicond, 1984, 18, P. 738–742.

12. Ignatov A. A., Dodin E. P., Shashkin V. I. Transient response theory of semiconductor superlattices: connection with Bloch oscillations Mod. Phys. Lett. B, 1991, 5, P. 1087–1094.

13. Grahn H. T., von Klitzing K., Ploog K., Dohler G. H. Electrical transport in narrow-miniband semiconductor superlattices Phys. Rev. B, 1991, 43, P. 12094–12097.


Review

For citations:


Shorokhov A.V., Prudskikh N.S., Semenov M.B., Krevchik V.D., Pyataev M.A., Golovatyuk S.E., Li T., Wang Yu. Kinetic coefficients of semiconductor superlattices in high-frequency electromagnetic fields. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(6):740-745. https://doi.org/10.17586/2220-8054-2017-8-6-740-745

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)