Level crossings of eigenvalues of the Schrodinger Hamiltonian of the isotropic harmonic¨ oscillator perturbed by a central point interaction in different dimensions
https://doi.org/10.17586/2220-8054-2018-9-2-179-186
Аннотация
In this brief presentation, some striking differences between level crossings of eigenvalues in one dimension (harmonic or conic oscillator with a central nonlocal δ0-interaction) or three dimensions (isotropic harmonic oscillator with a three-dimensional delta located at the origin) and those occurring in the two-dimensional analogue of these models will be highlighted.
Ключевые слова
Об авторах
S. FassariИспания
M. Gadella
Испания
M. Glasser
Испания
L. Nieto
Испания
F. matfa62@gmail.com
Швейцария
Список литературы
1. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics (AMS Chelsea Series), 2nd edition, American Mathematical Society, Providence, RI, 2004.
2. Albeverio S., Kurasov P. Singular Perturbations of Differential Operators. Publishing House, Cambridge UK, 2000.
3. Albeverio S., Dabrowski L., Kurasov P. Symmetries of Schrodinger operators with point interactions.¨ Lett. Math. Phys., 1998, 45, P. 33–47.
4. Exner P., Neidhardt H., Zagrebnov V.A. Potential approximations to δ0: an inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys., 2001, 224, P. 593–612.
5. Fassari S., Rinaldi F. On the spectrum of the Schrodinger Hamiltonian with a particular configuration of three point interactions.¨ Rep. Math. Phys., 2009, 64, P. 367–393.
6. Albeverio S., Fassari S., Rinaldi F. The Hamiltonian of the harmonic oscillator with an attractive δ0-interaction centred at the origin as approximated by the one with a triple of attractive δ-interactions. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 025302.
7. Fassari S., Inglese G. Spectroscopy of a three-dimensional isotropic harmonic oscillator with a delta-type perturbation. Helv. Phys. Acta, 1996, 69, P. 130–140.
8. Bru¨ning J., Geyler V., Lobanov I. Spectral properties of a short-range impurity in a quantum dot. J. Math. Phys., 2004, 45, P. 1267–1290.
9. Albeverio S., Fassari S., Rinaldi F. Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive δ-impurities symmetrically situated around the origin II. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (5), P. 803–815.
10. Albeverio S., Fassari S., Rinaldi F. Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive δ-impurities symmetrically situated around the origin. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (2), P. 268–289.
11. Albeverio S., Fassari S., Rinaldi F. A remarkable spectral feature of the Schrodinger Hamiltonian of the harmonic oscillator perturbed¨ by an attractive δ0-interaction centred at the origin: double degeneracy and level crossing. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 385305.
12. Fassari S., Gadella M., Glasser M.L., Nieto L.M. On the spectrum of the Schrodinger Hamiltonian of the one-dimensional conic oscillator¨ perturbed by a point interaction. ArXiv preprint 1706.04916, 2017.
13. Fassari S., Gadella M., Glasser M.L., Nieto L.M. Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity. Annals of Physics, 2018, 389, P. 48–62.
14. Cheon T., Shigehara T. Fermion-Boson duality of one-dimensional quantum particles with generalized contact interactions. Phys. Rev. Lett., 1999, 82, 2536.
15. Fassari S., Inglese G. On the spectrum of the harmonic oscillator with a delta-type perturbation. Helv. Phys. Acta, 1994, 67, P. 650–659.
16. Fassari S., Inglese G. On the spectrum of the harmonic oscillator with a delta-type perturbation. II. Helv. Phys. Acta, 1997, 70, P. 858–865.
17. Fassari S., Rinaldi F. On the spectrum of the Schrodinger Hamiltonian of the one-dimensional harmonic oscillator perturbed by two¨ identical attractive point interactions. Rep. Math. Phys., 2012, 69, P. 353–370.
18. Lorinczi J., Ma¨ lecki J. Spectral properties of the massless relativistic harmonic oscillator. J. Diff. Eq., 2012, 253, P. 2846–2871.
19. Tusek M. Analysis of Two-Dimensional Quantum Models with Singular Potentials, Diploma Thesis, Czech Technical University, Prague, 2006.
20. Tunali S. Point Interactions in Quantum Mechanics, MS Thesis, Izmir Institute of Technology, Izmir, 2014.
21. Reed M., Simon B. Methods in Modern Mathematical Physics IV – Analysis of Operators, Academic Press, NY, 1978.
Рецензия
Для цитирования:
, , , , . Наносистемы: физика, химия, математика. 2018;9(2):179–186. https://doi.org/10.17586/2220-8054-2018-9-2-179-186
For citation:
Fassari S., Gadella M., Glasser M.L., Nieto L.M., matfa62@gmail.com F. Level crossings of eigenvalues of the Schrodinger Hamiltonian of the isotropic harmonic¨ oscillator perturbed by a central point interaction in different dimensions. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):179–186. https://doi.org/10.17586/2220-8054-2018-9-2-179-186