Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The Lieb–Mattis theorem revisited

https://doi.org/10.17586/2220-8054-2018-9-2-196-205

Abstract

Simple formulation and a straightforward proof of the Lieb–Mattis theorem (LMT) do not indicate how powerful a tool it is. For more than fifty years, this theorem has been mainly discussed in its ‘strong’ form and applied mainly to many type of infinite spin lattices. It can be easily proved that in such cases, geometrically frustrated systems have to be excluded. However, it has been recently shown that the so-called ‘weak’ or general form of the LMT can be exploited considering some small, geometrically frustrated quantum spin systems. Moreover, many systems, which do not satisfy assumptions of the LMT, show identical features, including the level order characteristic for bipartite spin systems. It yields a question about possible generalizations or modifications of this theorem to involve a larger class of problems. To begin, algebraic aspects have to be understood with the invaluable role of the Perron-Frobenius theorem. The latter theorem is investigated, discussed, modified etc. in immense number of works. Many of them are important in physical applications and ways of reasoning they present can be exploited in different approaches to the LMT.

About the Author

W. Florek
Adam Mickiewicz University, Faculty of Physics
Poland

ul. Umultowska 85, 61-614 Poznan



References

1. Gatteschi D., Sessoli R., Villain J. Molecular Nanomagnets. Oxford University Press, Oxford, 2006.

2. Winpenny R.E.P. Molecular Cluster Magnets. World Scientific Publ. Co., Singapore 2012.

3. Molecular Nanomagnets and Related Phenomena, (Ed.: S. Gao), Springer, Berlin-Heidelberg 2015.

4. Miller J., Gatteschi D. Molecule-based magnets. Chem. Soc. Rev., 2011, 40 (6), P. 3053–3368.

5. Lieb E., Mattis D. Ordering energy levels of interacting spin systems. J. Math. Phys., 1962, 3, P. 749–751.

6. Lieb E., Schultz T., Mattis D. Two soluble models of an antiferromagnetic chain. Annals of Physics, 1961, 16, P. 407–466.

7. Buican M., Gromov A. Anyonic chains, topological defects, and conformal field theory. Commun. Math. Phys., 2017, 356, P. 1017–1056.

8. Rajak A., Nag T. Survival probability in a quenched Majorana chain with an impurity. Phys. Rev. E, 2017, 96, 022136.

9. Nevado P., Fernandez-Lorenzo S., Porras D. Topological edge states in periodically driven trapped-ion chains.´ Phys. Rev. Lett., 2017, 119, 210401.

10. Cheng M., Zaletel M., et al. Translational symmetry and microscopic constraints on symmetry-enriched topological phases: A view from the surface. Phys. Rev. X, 2016, 6, 041068.

11. Ruppeiner G., Bellucci S. Thermodynamic curvature for a two-parameter spin model with frustration. Phys. Rev. E, 2015, 91, 012116.

12. Miyao T. Quantum Griffiths inequalities. J. Stat. Phys., 2016, 164, P. 255–303.

13. Tylutki M., Astrakharchik G.E., Recati A. Coherent oscillations in small Fermi-polaron systems. Phys. Rev. A, 2017, 96, 063603.

14. Pan L., Liu Y., et al. Exact ordering of energy levels for one-dimensional interacting Fermi gases with SU(N) symmetry. Phys. Rev. B, 2017, 96, 075149.

15. Oshikawa M. Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett., 2000, 84, P. 1535–1538.

16. Nachtergaele B., Sims R. Commun. Math. Phys., 2007, 276, P. 437–472.

17. Zaletel M.P., Vishwanath A. Constraints on topological order in Mott insulators. Phys. Rev. Lett., 2015, 114, 077201.

18. Nomura K., Morishige J., Takaichi I. Extension of the Lieb-Schultz-Mattis theorem. J. Phys. A: Math. Theor., 2015, 48, 375001.

19. Nachtergaele B., Spitzer W., Starr S. Ferromagnetic ordering of energy levels. J. Stat. Phys., 2004, 116, P. 719–738.

20. Perron O. Zur Theorie der Matrizen. Math. Ann., 1907, 64, P. 248–263.

21. Frobenius G. Uber Matrizen aus nicht negativen Elementen¨ . S.-B. Preuss Acad. Wiss., Berlin 1912, pp. 456–477.

22. Simon B. The Statistical Mechanics of Lattice Gases, Vol. 1, Princeton Univ. Press, 1993.

23. MacCluer C.R. The many proofs and applications of Perron’s theorem. SIAM Review, 2000, 42, P. 487–498.

24. Hawkins T. Continued fractions and the origins of the Perron-Frobenius theorem. Arch. Hist. Exact Sci., 2008, 62, P. 655–717.

25. Rump S.M. Theorems of Perron-Frobenius type for matrices without sign restrictions. Lin. Alg. Appl., 1997, 266, P. 1–42.

26. Tarazaga P., Raydan M., Hurman A. Perron-Frobenius theorem for matrices with some negative entries. Lin. Alg. Appl., 2001, 328, P. 57–68.

27. Noutsos D. On Perron-Frobenius property of matrices having some negative entries. Lin. Alg. Appl., 2006, 412, P. 132–153.

28. Schnack J. Effects of frustration on magnetic molecules: a survey from Olivier Kahn until today. Dalton Trans., 2010, 39, P. 4677–4686.

29. Kamieniarz G., Florek W., Antkowiak M. Universal sequence of ground states validating the classification of frustration in antiferromagnetic rings with a single bond defect. Phys. Rev. B, 2015, 92, 140411.

30. Florek W., Antkowiak M., Kamieniarz G. Sequences of ground states and classification of frustration in odd-numbered antiferromagnetic rings. Phys. Rev. B, 2016, 94, 224421.

31. Schnack J. Frustration effects in antiferromagnetic molecules: The cuboctahedron. Polyhedron, 2009, 28, P. 1620–1623.

32. Antkowiak M., Florek W., Kamieniarz G. Universal sequence of the ground states and energy level ordering in frustrated antiferromagnetic rings with a single bond defect. Acta Phys. Pol. A, 2017, 131, P. 890–892.

33. Caciuffo R., Guidi T., et al. Spin dynamics of heterometallic Cr7M wheels M = Mn, Zn, Ni) probed by inelastic neutron scattering. Phys. Rev. B, 2005, 71, 174407.

34. Furrer A., Kramer K.W., et al. Magnetic and neutron spectroscopic properties of the tetrameric nickel compound [Mo¨ 12O28(µ2-OH)9(µ3OH)3{Ni(H2O)3}4]·13H2O. Phys. Rev. B, 2010, 81, 214437.

35. Antkowiak M., Koz lowski P., et al. Detection of ground states in frustrated molecular rings by in-field local magnetization profiles. Phys. Rev. B, 2013, 87, 184430.

36. Antkowiak M., Kucharski L ., Kamieniarz G. Non-uniform coupling model of the frustrated chromium-based ring Cr8Ni. EPJ Web of Conferences, 2014, 75, 05007.

37. Wilson R.J. Introduction to Graph Theory, Adison Wesley Longman Ltd., 4th edition, London, 1996.

38. Toulouse G. Theory of the frustration effect in spin glasses: I. Communications de Physique, 1977, 2, P. 115-119; Reprinted in Spin Glass Theory and Beyond (Eds.: Mezard M., Parisi G., Virasoro M.A.), World Scientific Publ. Co., Singapore, 1987, P. 99–103.´

39. Waldmann O. Spin dynamics of finite antiferromagnetic Heisenberg spin rings. Phys. Rev. B, 2001, 65, 024424.

40. Kamieniarz G., Koz lowski P., et al. Phenomenological modeling of molecular-based rings beyond the strong exchange limit: Bond alternation and single-ion anisotropy effects. Inorg. Chimica Acta, 2008, 361, P. 3690–3696.

41. Sobocinska M., Antkowiak M., et al. New tetranuclear manganese clusters with [Mn´ II3MnIII] and [MnII2MnIII2 ] metallic cores exhibiting low and high spin ground state. Dalton Trans., 2016, 45, P. 7303–7311.

42. Schnack J., Luban M., Modler R. Quantum rotational band model for the Heisenberg molecular magnet Mo72Fe30. Europhys. Lett., 2001, 56, P. 863–869.

43. Florek W., Kaliszan L.A., Kunert H.W., Machatine A.G.J. Small antiferromagnetic spin systems – sublattice Hamiltonians. Physica B, 2010, 405, P. 3811–3817.

44. Florek W., Kaliszan L.A. Small antiferromagnetic spin systems: Just beyond the rotational band model. Acta Phys. Pol. A, 2015, 127, P. 330–332.

45. Kahn O. Competing spin interactions and degenerate frustration for discrete molecular species. Chem. Phys. Lett., 1997, 265, P. 109–114.

46. Sharples J.W., Collison D., et al. Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Commun., 2014, 5, 5321.

47. Ako A.M., Waldmann O., et al. Odd-numbered FeIII complexes: Synthesis, molecular structure, reactivity, and magnetic properties. Inorg. Chem., 2007, 46, P. 756–766.

48. Koz lowski P, Antkowiak M., Kamieniarz G. Frustration signatures in the anisotropic model of a nine-spin s = 3/2 ring with bond defect. J. Nanopart. Res., 2011, 13, P. 6093–6102.

49. Baker M.L., Guidi T., et al. Spin dynamics of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic neutron scattering. Nature Phys., 2012, 8, P. 906–911.

50. Florek W., Jasniewicz-Pacer K, Kaliszan L.A., Kamieniarz G. Single-ion anisotropy in a four-spin system: mixing of´ S-states. Cen. Eur. J. Chem., 2009, 7, P. 211–214.

51. Florek W., Kaliszan L.A., Jasniewicz-Pacer K., Antkowiak M. Numerical analysis of magnetic states mixing in the Heisenberg model with´ the dihedral symmetry. EPJ Web of Conferences, 2013, 40, 14003.


Review

For citations:


Florek W. The Lieb–Mattis theorem revisited. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):196–205. https://doi.org/10.17586/2220-8054-2018-9-2-196-205

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)