Inverse dynamic problems for canonical systems and de Branges spaces
https://doi.org/10.17586/2220-8054-2018-9-2-215-224
Abstract
We show the equivalence of inverse problems for different dynamical systems and corresponding canonical systems. For canonical system with general Hamiltonian we outline the strategy of studying the dynamic inverse problem and procedure of construction of corresponding de Branges space.
Keywords
About the Authors
A. S. MikhaylovRussian Federation
7 Fontanka, St. Petersburg, 191023
7/9 Universitetskaya nab., St. Petersburg, 199034
V. S. Mikhaylov
Russian Federation
7 Fontanka, St. Petersburg, 191023
7/9 Universitetskaya nab., St. Petersburg, 199034
References
1. Mikhaylov A.S., Mikhaylov V.S. The Boundary Control method and de Branges spaces. Schrodinger equation, Dirac system and Discrete¨ Schrodinger operator.¨ Journal of Mathematical Analysis and Applications, 2018, 460 (2), P. 927–953.
2. Remling C. Schrodinger operators and de Branges spaces.¨ J. Funct. Anal., 2002, 196 (2), P. 323–394.
3. Romanov R.V. Canonical systems and de Branges spaces. URL: http://arxiv.org/abs/1408.6022, 2014.
4. Belishev M.I. An approach to multidimensional inverse problems for the wave equation. Soviet Math. Dokl., 1988, 36 (3), P. 481–484.
5. Belishev M.I. Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Problems, 1997, 13 (5), R1–R45.
6. Avdonin S.A., Lenhart S., Protopopescu V. Determining the potential in the Schrodinger equation from the Dirichlet to Neumann map by¨ the boundary control method. J. Inverse Ill-Posed Probl., 2005, 13, P. 317–330.
7. Belishev M.I. Recent progress in the boundary control method. Inverse Problems, 2007, 23 (5), R1–R67.
8. Belishev M.I. Boundary control and tomography of Riemannian manifolds (the BC-method). Uspekhi Matem. Nauk, 2017, 72 (4), P. 3–66 (in Russian).
9. de Branges L. Hilbert space of entire functions. Prentice-Hall, NJ, 1968.
10. Dym H., McKean H.P. Gaussian processes, function theory, and the inverse spectral problem. Academic Press, New York etc., 1976.
11. Avdonin S.A., Mikhaylov V.S. The boundary control approach to inverse spectral theory. Inverse Problems, 2010, 26 (4), 045009 (19 pp).
12. Belishev M.I., Mikhaylov V.S. Unified approach to classical equations of inverse problem theory. Journal of Inverse and Ill-Posed Problems, 2012, 20 (4), P. 461–488.
13. Mikhaylov A.S., Mikhaylov V.S. Relationship between different types of inverse data for the one-dimensional Schrodinger operator on a¨ half-line. Zapiski Nauchnykh Seminarov POMI, 2016, 451, P. 134–155.
14. Belishev M.I. Boundary control and inverse problems: a one-dimensional version of the boundary control method. J. Math. Sci. (N. Y.), 2008, 155 (3), P. 343–378.
15. Belishev M.I., Mikhaylov V.S. Inverse problem for one-dimensional dynamical Dirac system (BC-method). Inverse Problems, 2010, 26 (4), 045009 (19 pp).
16. Teschl G. Jacobi operators and completely integrable nonlinear lattices. Mathematical Surveys and Monographs, 72, American Mathematical Society, Providence, RI, 2000.
17. Mikhaylov A.S., Mikhaylov V.S. Dynamical inverse problem for the discrete Schrodinger operator.¨ Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (5), P. 842–854.
18. Mikhaylov A.S., Mikhaylov V.S. Dynamic inverse problem for the Jacobi matrices. URL: https://arxiv.org/abs/1704.02481, 2017.
19. Krein M.G. On the one method of effective solving the inverse boundary value problem. Dokl. Akad. Nauk. USSR, 1954, 94 (6), P. 987–990.
Review
For citations:
Mikhaylov A.S., Mikhaylov V.S. Inverse dynamic problems for canonical systems and de Branges spaces. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):215–224. https://doi.org/10.17586/2220-8054-2018-9-2-215-224