Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Cyclic-periodic ZRP structures. Scattering problem for generalized Bloch functions and conductivity

https://doi.org/10.17586/2220-8054-2018-9-2-225-243

Abstract

Problems of quantum description of nanostructures transport properties is investigated in a framework of the structure symmetry group. Corresponding states of conductivity electrons are defined as irreducible representations of the group. The right/left Bloch functions are written and the Floquet theorem is formulated. The results are used for formulating the zero range potential (ZRP) conditions for arbitrary orbital quantum number whose construction is presented via Darboux dressing chain built in a space of distributions. The electron spin variables are taken into account. A spectrum of the non-relativistic Hamiltonian with a system of a nanostructure ZRPs is found from the matrix eigenvalue problem. The scattering problem on an extra ZRP is formulated in terms of the right/left Bloch functions. As an example, the discrete spectrum and scattering on N-ZRP-centers is solved and compared with experimental data for benzene molecule.

About the Author

S. Leble
Immanuel Kant BFU
Russian Federation

Al. Nevsky st.14, Kaliningrad, 236016



References

1. Floquet G. Sur les equations diff´ erentielles lin´ eaires´ a coefficients periodiques.´ Annales de l’Ecole Normale Sup´ erieure´ , 1883, 12, P. 47–88.

2. Leble S.B. Kolmogorov equation for Bloch electrons and electrical resistivity models for nanowires. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (2), P. 247–259.

3. Fermi E. Sopra lo spostamento per pressione delle righe elevate delle serie spettrali. Il Nuovo Cimento, 1934, 11, P. 157–166.

4. Breit G. The scattering of slow neutrons by bound protons: methods of calculation. Phys. Rev., 1947, 71, P. 215.

5. Demkov Yu.N., Ostrovskii V.N. Zero-range potentials and their applications in atomic physics. Plenum, New York, 1988.

6. Pavlov B.S. The theory of extensions and explicitly-solvable models. Russian Math. Surveys, 1987, 42 (6), P. 127–168.

7. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. Solvable models in quantum mechanics. Springer, New York, 1988.

8. Huang K., Yang C.N. Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev., 1957, 105, P. 767–775.

9. Derevianko A. Revised Huang-Yang multipolar pseudopotential. Phys. Rev. A, 2005, 72, 044701.

10. Leble S.B., Yalunin S. A dressing of zero-range potentials and electron molecule scattering problem at low energies. Phys. Lett. A, 2005, 339, P. 83–88.

11. Pavlov B.S., Strepetov A.V. Exactly solvable model of electron scattering by an inhomogeneity in a thin conductor. Theoret. and Math. Phys., 1992, 90 (2), P. 152–156.

12. Leble S.B., Yalunin S. Generalized zero range potentials and multi-channel electron molecule scattering. Rad. Phys. Chem., 2003, 68, P. 181–186.

13. Adamyan V.M., Blinova I.V., Popov A.I., Popov I.Yu. Waveguide bands for a system of macromolecules. Nanosystems: physics, chemistry, mathematics, 2015, 6 (5), P. 611–617.

14. Leble S., Ponomarev D.V. Dressing of zero-range potentials into realistic molecular potentials of finite range. Task Quarterly, 2010, 14 (1–2), P. 29–34.

15. Grishanov E.N., Popov I.Y. Electron spectrum for aligned SWNT array in a magnetic field. Superlattices and Microstructures, 2016, 100, P. 1276–1282.

16. Grishanov E.N., Popov I.Y. Computer simulation of periodic nanostructures. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (5), P. 865–868.

17. Botman S., Leble S. Bloch wave scattering on pseudopotential impurity in 1D Dirac comb model. ArXiv:1511.04758v1 [condmat.mes-hall], 2015.

18. Coulson C.A., O’Leary B., Mallion R.B. Huckel theory for organic chemists¨ . Academic Press, London, 1978.

19. Crum M.M. Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser., 1955, 6 (2), P. 121–127.

20. Doktorov E.V., Leble S.B. Dressing method in mathematical physics. Springer, London, 2006.

21. Drukarev G.F. The zero-range potential model and its application in atomic and molecular physics. Adv. Quantum Chem., 1979, 11, P. 251–274.

22. Bordag M., Munoz-Casta˜ neda J.M. Dirac lattices, zero-range potentials, and self-adjoint extension.˜ Phys. Rev. D, 2015, 91, 065027.

23. Idziaszek Z., Callarco T. Pseudopotential method for higher partial wave scattering. Phys. Rev. Lett., 2006, 96, 013201.

24. Fock V. Fundamentals of quantum mechanics. Mir, Moscow, 1982.

25. Le Bellac M. Quantum Physics, Cambridge University Press, 2006.

26. Matveev V.B., Salle M.A. Darboux transformations and solitons. Springer-Verlag, Berlin, Heidelberg, 1991.

27. Nakahara M., Wakai C., Matubayasi N. Jump in the Rotational Mobility of Benzene Induced by the Clathrate Hydrate Formation. J. Phys. Chem., 1995, 99 (5), P. 1377–1379.

28. Szmytkowski R. Zero-range potentials for Dirac particles: Scattering and related continuum problems. Phys. Rev. A, 2005, 71, 052708(1– 19).

29. Ponomarev D.V. Electronic states in zero-range potential models of nanostructures with a cyclic symmetry. MSc. Thesis. Supervisor: prof. S. Leble. Gdansk, Gdansk University of Technology, 2010.


Review

For citations:


Leble S. Cyclic-periodic ZRP structures. Scattering problem for generalized Bloch functions and conductivity. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):225–243. https://doi.org/10.17586/2220-8054-2018-9-2-225-243

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)