Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Magnetic response of a quantum wire of elliptical cross-section in a magnetic field perpendicular to the axis of the wire

Abstract

The magnetic response of a quantum wire of elliptical cross section is investigated. An explicit analytic expression is found for the spectrum and wave functions of an electron in the wire. Using an approach based on finding the classical partition function, an expression is obtained for the magnetic response of the electron gas in the wire. The dependence of the response on the magnitude and direction of the magnetic field is found.

About the Authors

V. A. Margulis
Ogarev Mordovian State University
Russian Federation

Bolshevistskaya 68, Saransk, 340005



V. V. Karpunin
Mordovian State Pedagogical Institute named after M. E. Evseviev
Russian Federation

Studencheskaya 11 A, Saransk, 340007



K. I. Mironova
Ogarev Mordovian State University
Russian Federation

Bolshevistskaya 68, Saransk, 340005



References

1. Merlin R. Subband-Landau-level coupling in tilted magnetic fields: Exact results for parabolic wells. Sol. State Commun., 1987, 64, P. 99–101.

2. Geyler V.A., Margulis V.A. Specific heat of quasi-two-dimensional systems in a magnetic field. Phys. Rev. B, 1997, 55, P. 2543–2548.

3. Bychkov Yu.A., Mel0nikov V.I., Rashba E.I. Effect of spin-orbit coupling on the energy spectrum of a 2D electron system in a tilted magnetic field. Sov. JETP, 1990, 71, P. 401–405.

4. Drichko I.L., Smirnov I.Yu., Suslov A.V., Mironov O.A., Leadley D.R. Magnetoresistivity and acoustoelectronic effects in a tilted magnetic field in p-Si/SiGe/Si structures with an anisotropic g factor. JETP, 2010, 111, P. 495–502.

5. Herzog F., Heedt S., Goerke S., Ibrahim A., Rupprecht B., Heyn Ch., Hardtdegen H., Schpers Th., Wilde M.A. and Grundler D. Confinement and inhomogeneous broadening effects in the quantum oscillatory magnetization of quantum dot ensembles. J. Phys.: Condens. Matter, 2016, 28, P. 045301.

6. Wilde M.A. and Grundler D. Alternative method for the quantitative determination of Rashba-and Dresselhaus spin-orbit interaction using the magnetization. New Journal of Physics, 2013, 15, P. 115013.

7. Wilde M. A., Rupprecht B., Herzog F., Ibrahim A., and Grundler D. Spin-orbit interaction in the magnetization of two-dimensional electron systems. Phys. Status Solidi B, 2014, 251, P. 1710–1724.

8. Rupprecht B., Heedt S., Hardtdegen H., Schapers Th., Heyn Ch., Wilde M.A., and Grundler D. Frequency anomaly in the Rashba-effect induced magnetization oscillations of a high-mobility two-dimensional electron system. Phys. Rev. B, 2013, 87, P. 035307.

9. Rupprecht B., Krenner W., Wurstbauer U., Heyn Ch., Windisch T., Wilde M.A., Wegscheider W., and Grundler D. Magnetism in a Mn modulation-doped InAs/InGaAs heterostructure with a two-dimensional hole system. J.Appl.Phys., 2010, 107, P. 093711.

10. Wilde M.A., Schwarz M.P., Heyn Ch., Heitmann D., and Grundler D. Experimental evidence of the ideal de Haas-van Alphen effect in a two-dimensional system. Phys. Rev. B, 2006, 73, P. 125325.

11. Ruhe N., Springborn J.I., and Heyn Ch. Simultaneous measurement of the de Haas-van Alphen and the Shubnikov-de Haas effect in a two-dimensional electron system. Phys. Rev. B, 2006, 74, P. 235326.

12. Wilde M. A., Rhode M., Heyn Ch., Heitmann D., and Grundler D. Direct measurements of the spin and valley splittings in the magnetization of a Si/SiGe quantum well in tilted magnetic fields. Phys. Rev. B, 2005, 72, P. 165429.

13. Wilde M.A., Springborn J.I., Heyn Ch., Heitmann D., Grundler D. Magnetization of GaAs quantum wires with quasi one-dimensional electron systems. Physica E, 2004, 22, P. 729–732.

14. Apalkov V.M. and Portnoi M.E. Tuning gaps and phases of a two-subband system in a quantizing magnetic field. Phys. Rev. B, 2002, 65, P. 125310.

15. Gitsu D.V., Huber T.E., Konopko L.A., and Nikolaeva A.A. Aharonov-Bohm Oscillations in Bi Nanowires. AIP Conference Proceedings, 2006, 850, P. 1409–1410.

16. Tsindlekht M.I., Genkin V.M., Felner I., Zeides F., Katz N., Gazi S., Chromik S., Dobrovolskiy O.V., Sachser R., Huth M. Magnetic moment jumps in flat and nanopatterned Nb thin-walled cylinders. Physica C: Superconductivity and its Applications, 2017, 533, P. 101– 104.

17. Botman S.A., Leble S.B. Electrical conductivity model for quasionedimensional structures. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(2), P. 231–235.

18. Kyazimzade A.G., Salmanov V.M., Huseynov A.G., Mamedov R.M., Salmanova A.A., Ahmedova F.Sh. Nonlinear optical and quantadimensional effects in monoselenide of gallium and indium. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 654–660.

19. Landau L.D., Lifshitz E.M. Statistical Physics, Third Edition, Part 1: Volume 5 (Course of Theoretical Physics, Volume 5), ButterworthHeinemann; 3 edition, January 15, 1980, 544 p.

20. Shoenberg D. Magnetic Oscillations in Metals. Cambridge University Press, 1984, 570 p.

21. Perelomov A.M. Generalized Coherent States and their Applications, Springer-Verlag Berlin Heidelberg, 1986, 320 p.

22. Geyler V.A., Margulis V.A., Nesmelov A.G., Chuchaev I.I. Magnetic Susceptibility of a Quasi-Two-Dimensional System in a Tilted Magnetic Field. Phys. Sol. St., 1994, 36, P. 1090–1094.

23. Margulis V.A., Mironov V.A. Magnetic moment of a 2D electron gas with spin-orbit interaction. JETP, 2009, 108, P. 656–660.

24. Margulis V.A., Mironov V.A. Magnetic moment of the Volcano ring. Phys. Sol. St., 2008, 50, P. 152–158.

25. Margulis V.A. Magnetization and polarization of the electron gas in multiferroics. Low Temp. Phys., 2014, 40, P. 363–366.

26. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series, Elementary Functions, N.Y.: Gordon and Breach, 1986, 800 p.


Review

For citations:


Margulis V.A., Karpunin V.V., Mironova K.I. Magnetic response of a quantum wire of elliptical cross-section in a magnetic field perpendicular to the axis of the wire. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):244–251.

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)