Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Peculiarities of LaFeO3 nanocrystals formation via glycinenitrate combustion

https://doi.org/10.17586/22208054201785647653

Abstract

Varying glycine to nitrate ratio in the initial solution the powders based on nanocrystalline LaFeO3 were synthesized by solution combustion synthesis. The powders were studied by Xray diffractometry, scanning electron microscopy, adsorption analysis and helium pycnometry. The average crystallite size of the synthesized LaFeO3 nanocrystals ranged from 182 to 859 nm, and the specific surface area of the nanopowders based on them ranged from 8 to 33 m2/g. Based on the results, the influence of redox composition of the reaction solution on the nature of the combustion processes, as well as the composition, structure and properties of LaFeO3 nanocrystals were analyzed. Here, it was shown, that the nanopowders have specific microstructure in terms of monocrystalline nanoscale layers of lanthanum orthoferrite, therefore it is allowed to consider them as a promising base for catalytically and magnetically functional materials.

About the Authors

A. Bachina
Saint Petersburg State Technological Institute (Technical University); Ioffe Institute, Russian Academy of Sciences
Russian Federation

Moskovskiy 26, St. Petersburg, 190013

Politekhnicheskaya 26, St. Petersburg, 194021



V. A. Ivanov
Saint Petersburg State Technological Institute (Technical University)
Russian Federation

Moskovskiy 26, St. Petersburg, 190013



V. I. Popkov
Saint Petersburg State Technological Institute (Technical University); Ioffe Institute, Russian Academy of Sciences
Russian Federation

Moskovskiy 26, St. Petersburg, 190013

Politekhnicheskaya 26, St. Petersburg, 194021



References

1. Pavlovska O.B., Vasylechko, Lutsyuk I. V., Koval N.M., Zhydachevskii Y.A., Pieniˇzek A. Structure Peculiarities of Microand Nanocrystalline Perovskite Ferrites La1􀀀xSmxFeO3. Nanoscale Res. Lett., 2017, 12, P. 153–159.

2. Ciambelli P., Cimino S., De Rossi S., Lisi L., Minelli G., Porta P., Russo G. AFeO3 (A=La, Nd, Sm) and LaFe1􀀀xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Appl. Catal. B: Environ., 2001, 29(4), P. 239–250.

3. Wang J., Liu Q., Xue D., Li F. Synthesis and characterization of LaFeO3 nano particles. J. Mater. Sci. Lett., 2002, 21(13), P. 1059–1062.

4. Rajendran M., Bhattacharya A.K. Nanocrystalline orthoferrite powders: Synthesis and magnetic properties. J. Eur. Ceram. Soc., 2006, 26(16), P. 3675–3679.

5. Khetre S.M., Jadhav H.V., Jagadale P.N., Kulal S.R., Bamane S.R. Studies on electrical and dielectric properties of LaFeO3. Adv. Appl. Sci. Res., 2011, 2(4), P. 503–511.

6. MarkovaVelichkova M., Lazarova T., Tumbalev V., Ivanov G., Kovacheva D., Stefanov P., Naydenov A. Complete oxidation of hydrocarbons on YFeO3 and LaFeO3 catalysts. Chem. Eng. J., 2013, 231, P. 236–244.

7. Lomanova N.A., Pleshakov I.V., Volkov M.P., Gusarov V.V. Magnetic properties of Aurivillius phases Bim+1Fem􀀀3 Ti3O3m+3 with m =5.5, 7, 8. Mater. Sci. Eng. B., 2016, 214, P. 51–56.

8. Popkov V.I., Almjasheva O.V., Semenova A.S., Kellerman D.G., Nevedomskyi V.N., Gusarov V.V. Magnetic properties of YFeO3 nanocrystals obtained by different softchemical methods. J. Mater. Sci. Mater. Electron., 2017, 28(10), P. 7163–7170.

9. Nguyen A.T., Nguyen T.D., Mittova V.O., Berezhnaya M.V., Mittova I.Y. Phase composition and magnetic properties of Ni1􀀀xCoxFe2O4 nanocrystals with spinel structure, synthesized by Coprecipiation. Nanosyst. Physics, Chem. Math., 2017, 8(3), P. 371–377.

10. Parida K.M., Reddy K.H., Martha S., Das D.P., Biswal N. Fabrication of nanocrystalline LaFeO3: An efficient sol–gel autocombustion assisted visible light responsive photocatalyst for water decomposition. Int. J. Hydrogen Energy., 2010, 35(22), P. 12161–12168.

11. Acharya S., Padhi D.K., Parida K.M. Visible light driven LaFeO3 nano sphere/RGO composite photocatalysts for efficient water decomposition reaction. Catal. Today., 2017, P. 1–12.

12. Iervolino G., Vaiano V., Sannino D., Rizzo L., Palma V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Rudoped LaFeO3. Appl. Catal. B Environ., 2017, 207, P. 182–194.

13. Tien N.A., Mittova I.Y., Almjasheva O.V., Kirillova S.A., Gusarov V.V. Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite. Glas. Phys. Chem., 2008, 34, P. 756–761.

14. Van Tac D., Mittova V.O., Mittova I.Y. Influence of Lanthanum Content and Annealing Temperature on the Size and Magnetic Properties of Sol – Gel Derived Y1􀀀xLaxFeO3 Nanocrystals. Inorg. Mater., 2011, 47(5), P. 590–595.

15. Zheng W., Liu R., Peng D., Meng G. Hydrothermal synthesis of LaFeO3 under carbonatecontaining medium. Mater. Lett., 2000, 43(12), P. 19–22.

16. Ji K., Dai H., Deng J., Song L., Xie S., Han W. Glucoseassisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion. J. Solid State Chem., 2013, 199, P. 164–170.

17. Tugova E.A., Karpov O.N. Nanocrystalline perovskitelike oxides formation in Ln2O3Fe 2O3H 2O (Ln = La, Gd) systems. Nanosyst.: Physics, Chem. Math., 2014, 5(6), P. 854–860.

18. Nguyen A.T., Knurova M.V, Nguyen T.M., Mittova V.O., Mittova I.Y. Synthesis and the study of magnetic characteristic of nano La1􀀀xSrxFeO3 by coprecipitation method. Nanosyst.: Physics, Chem. Math., 2014, 5(5), P. 692–702.

19. Cherepanov V.A., Gavrilova L.Y., Volkova N.E., Urusov A.S., Aksenova T.V, Kiselev E. Phase equilibria and thermodynamic properties of oxide systems on the basis of rare earth, alkaline earth and 3dtransition (Mn, Fe, Co) metals. A short overview of, Chim. Techno Acta., 2015, 2(4), P. 273–305.

20. Wang J., Dong X., Qu Z., Liu G., Yu W. Electrospinning Preparation of LaFeO3 Nanofibers, Mod. Appl. Sci., 2009, 3(9), P. 65–71.

21. Popkov V.I., Almjasheva O.V. Yttrium orthoferrite YFeO3 nanopowders formation under glycinenitrate combustion conditions. Russ. J. Appl. Chem., 2014, 87(2), P. 167–171.

22. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev., 2016, 116(23), P. 14493–14586.

23. Khaliullin S.M., Zhuravlev V.D., Bamburov V.G. Solutioncombustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects. Int. J. SelfPropagating HighTemperature Synth., 2016, 25(3), P. 139–148.

24. Kondakindi R.R., Karan K., Peppley B.A. A simple and efficient preparation of LaFeO3 nanopowders by glycine–nitrate process: Effect of glycine concentration. Ceram. Int., 2012, 38(1), P. 449–456.

25. Komova O.V., Simagina V.I., Mukha S.A., Netskina O.V., Odegova G.V., Bulavchenko O.A., Ishchenko A.V., Pochtar’ A.A. A modified glycine–nitrate combustion method for onestep synthesis of LaFeO3. Adv. Powder Technol., 2016, 27(2), P. 496–503.

26. Zaboeva E.A., Izotova S.G., Popkov V.I. Glycinenitrate combustion synthesis of CeFeO3based nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89(8), P. 1228–1236.

27. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., Sokolov V.V., Gusarov V.V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycinenitrate combustion, Nanosyst.: Physics, Chem. Math., 2015, 6(6), P. 866–874.

28. Popkov V.I., Almjasheva O.V., Schmidt M.P., Izotova S.G., Gusarov V.V. Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products Russ. J. Inorg. Chem., 2015, 60(10), P. 1193–1198.

29. Wang X.J., Shen H.Y., Tian H.Y., Yang Q.H. Photocatalytic Degradation of WaterSoluble Azo Dyes by LaFeO3 and YFeO3. Adv. Mater. Res., 2012, 465, P. 37–43.


Review

For citations:


Bachina A., Ivanov V.A., Popkov V.I. Peculiarities of LaFeO3 nanocrystals formation via glycinenitrate combustion. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):647-653. https://doi.org/10.17586/22208054201785647653

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)