Ca1-x-yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics
https://doi.org/10.17586/2220-8054-2018-9-2-259-265
Abstract
We have synthesized single-phase powders of Ca1−x−yYbxPryF2+x+y solid solutions with an average particle size of about 35 nm by co-precipitation from aqueous nitrate solutions. After annealing at 600 ◦C during 1 hour, the particle size was increased up to 150–200 nm. Individual luminescence bands of praseodymium are distinguishable in the luminescence spectrum. The intensity of the luminescence of ytterbium increased by a factor of 1000 in comparison with the unannealed samples. The highest luminescence intensity of ytterbium was detected for the Ca0.9495Yb0.0500Pr0.0005F2.0505.
Keywords
About the Authors
S. V. KuznetsovRussian Federation
38 Vavilova str., Moscow, 119991
O. A. Morozov
Russian Federation
18 Kremljovskaya, Kazan, 420008
V. G. Gorieva
Russian Federation
18 Kremljovskaya, Kazan, 420008
M. N. Mayakova
Russian Federation
38 Vavilova str., Moscow, 119991
M. A. Marisov
Russian Federation
18 Kremljovskaya, Kazan, 420008
V. V. Voronov
Russian Federation
38 Vavilova str., Moscow, 119991
A. D. Yapryntsev
Russian Federation
31 Leninsky pr., Moscow,119991
V. K. Ivanov
Russian Federation
31 Leninsky pr., Moscow,119991
E. I. Madirov
Russian Federation
18 Kremljovskaya, Kazan, 420008
A. S. Nizamutdinov
Russian Federation
18 Kremljovskaya, Kazan, 420008
V. V. Semashko
Russian Federation
18 Kremljovskaya, Kazan, 420008
P. P. Fedorov
Russian Federation
38 Vavilova str., Moscow, 119991
References
1. Huang X., Han S., Huang W., Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev., 2013, 42, P. 173–201.
2. Green M.A., Bremner S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Mater., 2017, 16, P. 23–34.
3. Richardson B.S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Solar Energy Materials & Solar Cells, 2006, 90, P. 2329–2337.
4. Piper W.W., DeLuca J.A., Ham F.S. Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light. J. Lumin., 1974, 8, P. 344–348.
5. Sobolev B.P. The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of the Rare Earth Trifluorides. Institut d‘Estudis Catalans, Barcelona, Spain, 2000, 520 pp.
6. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., et. al. Synthesis of CaF2-YF3 nanopowders by co-precipitation from aqueos solutions. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(4), P. 462–470.
7. Mayakova M.N., Luginina A.A., Kuznetsov S.V., et. al. Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueous solutions. Mendeleev Communications, 2014, 24(6), P. 360–362.
8. Kuznetsov S.V., Fedorov P.P., Voronov V.V., et. al. Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. Rus. J. Inorg. Chem., 2010, 55(4), P. 484–493.
9. Fedorov P.P., Mayakova M.N., Kuznetzov S.V., et. al. Co-precipitation of yttrium and barium fluorides from aqueous solutions. Materials Research Bulletin, 2012, 47, P. 1794–1799.
10. Karbowiak M., Cichos J. Does BaYF5 nanocrystal exist? – The BF2-YF3 solid solution revisited using photoluminescence spectroscopy. J. Alloy Compd., 2016, 673, P. 258–264.
11. ElFajri A., Moussetad M., Tardy P., Barriere A.S. Electrical study of Pr3+ ion environment in Ca1−xPrxF2+x thin films. Phys. Status solidi (a), 2000, 179, P. 373–386.
12. Sokolov N.S., Suturin S.M. MBE growth of calcium and cadmium fluoride nanostructures on silicon. Appl. Surf. Sci., 2002, 175–176, P. 619–628.
13. Blunier S., Zogg H., Maissen C., et. al. Lattice and thermal misfit dislocation in epitaxial CaF2/Si(111) and BaF2-CaF2/Si(111) structures. Phys. Rev. Lett., 1992, 68(24), P. 3599–3602.
14. Yagoub M.Y.A., Swart H.C., Coetsee E. Concentration quenching, surface and spectral analyses of SrF2:Pr3+ prepared by different synthesis techniques. Opt. Mater., 2015, 42, P. 204–209.
15. Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V. Low temperature phase formation in the CaF2–HoF3 system. Russ. J. Inorg. Chem., 2017, 62(9), P. 1173–1176.
16. Batsanova L.R. Rare-earth fluorides. Rus. Chem. Rev., 1971, 40(6), P. 465–484.
17. Gmelin Handbuch der anorganischen Chemie. Syst. Nummer 39: Seltenerdelemente. Teil C.3: Sc, Y, La und Lanthanide. Fluoride, Oxifluoride und zugehogige Alkalidoppelverbindungen. Berlin, Springer Vlg., 1976, 439 pp.
18. Rozhnova Yu.A., Kuznetsov S.V., Luginina A.A., et. al., New Sr1−x−yRx(NH4)yF2+x−y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Mater. Chem. Phys., 2016, 172, P. 150–157.
19. Dieke G.H., Crosswhite H.M. The spectra of the doubly and triply ionized rare earths. Appl. Opt., 1963, 2, P. 675–686.
20. Kuzmanoski A., Pankratov V., Feldmann C. Energy transfer of the quantum-cutter couple Pr3+–Mn2+ in CaF2:Pr3+,Mn2+ nanoparticles. J. Lumin., 2016, 179, P. 555–561.
21. Meijerink A., Wegh R., Vergeer P., Vlugt T. Photon management with lanthanides. Opt. Mater., 2006, 28, P. 575–581.
22. Pudovkin M.S., Morozov O.A., Pavlov V.V., Korableva S.L., Lukinova E.V., Osin Y.N., Evtugyn V.G., Safiullin R.A., Semashko V.V. Physical Background for Luminescence Thermometry Sensors Based on Pr3+:LaF3 Crystalline Particles. J. Nanomaterials, 2017, Article No 3108586.
Review
For citations:
Kuznetsov S.V., Morozov O.A., Gorieva V.G., Mayakova M.N., Marisov M.A., Voronov V.V., Yapryntsev A.D., Ivanov V.K., Madirov E.I., Nizamutdinov A.S., Semashko V.V., Fedorov P.P. Ca1-x-yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics. Nanosystems: Physics, Chemistry, Mathematics. 2018;9(2):259–265. https://doi.org/10.17586/2220-8054-2018-9-2-259-265