Oxide material synthesis by combustion of organic-inorganic compositions
https://doi.org/10.17586/2220-8054-2017-8-4-476-502
Abstract
This review analyzes and summarizes the research results for oxide material synthesis by combustion of organic-inorganic mixtures. We have outlined the range of physical and chemical factors influencing the precursor processes and the oxide material synthesis itself, as well as have shown the ways and options to control these processes and nanoscale materials’ properties. We have highlighted several issues concerning the analysis methods for the resulting materials and processes. We have exemplified the practical implementation of the methods under discussion.
About the Authors
A. A. OstroushkoRussian Federation
Ekaterinburg
O. V. Russkikh
Russian Federation
Ekaterinburg
References
1. Knurova M.V., Mittova I.Ya., Perov N.S., Al’myasheva O.V., Tien N.A., Mittova V.O., Bessalova V.V., Viryutina E.L. Effect of the degree of doping on the size and magnetic properties of nanocrystals La<sub>1-x</sub>Zn<sub>x</sub>FeO<sub>3</sub> synthesized by the sol–gel method. Russ. J. Inorg. Chem., 2017, 62(3), P. 281–287.
2. Tien N.A., Mittova I.Ya., Solodukhin D.O., Al’myasheva O.V., Mittova V.O., Demidova S.Yu. Sol–gel formation and properties of nanocrystals of solid solutions Y<sub>1-x</sub>Ca<sub>x</sub>FeO<sub>3</sub>. Russ. J. Inorg. Chem., 2014, 59(2), P. 40–45.
3. Tac D.V., Mittova V.O., Almjasheva O.V., Mittova I.Ya. Synthesis, structure, and magnetic properties of nanocrystalline Y<sub>3-x</sub>La<sub>x</sub>Fe<sub>5</sub>O<sub>12</sub> (0 ≤ x ≤ 0.6). Inorgan. Mater., 2012, 48(1), P. 74–78.
4. Tac D.V., Mittova V.O., Almjasheva O.V., Mittova I.Ya. Synthesis and magnetic properties of nanocrystalline Y<sub>1-x</sub>Cd<sub>x</sub>FeO<sub>3−δ</sub> (0 ≤ x ≤ 0.2). Inorgan. Mater., 2011, 47(10), P. 1141–1146.
5. Tien N.A., Mittova I.Ya., Al’myasheva O.V. Influence of the synthesis conditions on the particle size and morphology of yttrium orthoferrite obtained from aqueous solutions. Russ. J. Appl. Chem., 2009, 82(11), P. 1915–1918.
6. Chen L., He B.-Y., He S., Wang T.-J., Su C.-L., Jin Y. Fe-Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism. Powder Technology, 2012, 227, P. 3–8.
7. Kolen’ko Y.V., Maksimov V.D., Garshev A.V., Mukhanov V.A., Oleynikov N.N., Churagulov B.R. Physicochemical properties of nanocrystalline zirconia hydrothermally synthesized from zirconyl chloride and zirconyl nitrate aqueous solutions. Russ. J. Inorg. Chem., 2004, 49(8), P. 1133–1137.
8. Almamoun O., Ma S.Y. Effect of Mn doping on the structural, morphological and optical properties of SnO<sub>2</sub> nanoparticles prepared by sol-gel method. Mater. Lett., 2017, 199, P. 172–175.
9. Mahdavi R., Talesh S.S.A. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanoparticles by sol-gel method. Ultrasonics Sonochemistry, 2017, 39, P. 504–510.
10. Vasilevskaya A.K., Almjasheva O.V., Gusarov V.V. Formation of nanocrystals in the ZrO<sub>2</sub>–H<sub>2</sub>O system. Russ. J. Gen. Chem., 2015, 85(12), P. 2673–2676.
11. Sharipov Kh.B., Yapryntsev A.D., Baranchikov A.E., Boytsova O.V., Kurzeev S.A., Ivanova O.S., Borilo L.P., Gil’mutdinov F.Z., Kozik V.V., Ivanov V.K. Synthesis of manganese dioxide by homogeneous hydrolysis in the presence of melamine. Russ. J. Inorg. Chem., 2017, 62(2), P. 139–149.
12. Zhang M., An T., Liu X., Hu X., Fu J. Preparation of a high-activity ZnO/TiO<sub>2</sub> photocatalyst via homogeneous hydrolysis method with low temperature crystallization. Materials Letters, 2010, 64(17), P. 1883–1886.
13. Sadrieyeh S., Malekfar R. The effects of hydrolysis level on structural properties of titania aerogels. J. Non-Crystall. Solids, 2017, 457, P. 175–179.
14. Pechini M.P. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US 3330697 A. Filed Aug. 26, 1963, Ser. N 304, 437 Ckaims July 11, 1967.
15. Abiev R.S., Almyasheva O.V., Gusarov V.V., Izotova S.G. Method of producing nanopowder of cobalt ferrite and microreactor to this end. Patent for invention N RU 2625981 C1. Date of publication: 20. 07. 2017 Bull. N 20. Effective date for property rights: 16. 09. 2016.
16. Zhabrev V.A., Efimenko L.P., Baryshnikov V.G., Polyakova I.G., Gumennikov A.V. Synthesis of BaTiO<sub>3</sub> Powders of Different Dispersities by the Exchange Reactions in Molten Salts. Glass Physics and Chemistry, 2008, 34(1), P. 91–96.
17. Khokhlov V.A., Dokutovich V.N., Modenov D.V., Kochedykov V.A., Zakir’janova I.D., Korzun I.V., Nikolaeva E.V. Method of producing nanosize particles of complex metal oxides. RU 2461668 C1. Date of filing: 16. 03. 2011. Date of publication 20. 09. 2012. Bull. 26.
18. Zhou H., Mao Y., Wong S.S. Probing Structure-Parameter Correlations in the Molten Salt Synthesis of BaZrO<sub>3</sub> Perovskite Submicrometer-Sized Particles. Chem. Mater, 2007, 19, P. 5238–5249.
19. Han P., Jiang X. Regulation on the synthesis temperature and optical properties of SmBO<sub>3</sub> prepared by chloride fluxes assisted the solid state reaction method. Advanced Powder Technology, 2015, 26(3), P. 977–982.
20. Morozov M.I., Lomanova N.A., Gusarov V.V. Specific features of BiFeO<sub>3</sub> formation in a mixture of bismuth(III) and iron(III) oxides. Russ. J. Gen. Chem., 2003, 73(11), P. 1676–1680.
21. Bingbing Liu, Yuanbo Zhang, Zijian Su, Manman Lu, Zhiwei Peng, Guanghui Li, Tao Jiang Formation mechanism of MnxFe<sub>3-x</sub>O<sub>4</sub> by solid-state reaction of MnO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> in air atmosphere: Morphologies and properties evolution. Powder Technology, 2017, 313, P. 201–209.
22. Morozov M.I., Mezentseva L.P., Gusarov V.V. Mechanism of formation of Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>. Russ. J. Gen. Chem., 2002, 72(7), P. 1038–1040.
23. Morozov M.I., Gusarov V.V. Synthesis of A<sub>m−1</sub>Bi<sub>2</sub>M<sub>m</sub>O<sub>3m+3</sub> compounds in the Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub>-BiFeO<sub>3</sub> system. Inorganic Materials, 2002, 38(7), P. 723–729.
24. Mikhailov M.M., Vlasov V.A., Utebekov T.A., Sokolovskiy A.N., Lovizkii A.A., Smolin A.E. Solid-state synthesis of LaSrMnO<sub>3</sub> powders for smart coatings. Mater. Research Bull., 2017, 89, P. 154–160. doi: 10.1016/j.materresbull.2017.01.038
25. Belkova T.B., Kostikov Yu.P., Neiman A.Ya. Solid-State Reactions of Bismuth Oxide with Transition-Metal Oxides (Cr<sub>2</sub>O<sub>3</sub>, Mn<sub>2</sub>O<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>). Russ. J. Inorg. Chem., 1999, 44(2), P. 161–166.
26. Gusarov V.V., Suvorov S.A. Autocatalytic solid-phase reaction. J. Appl. Chem. USSR. 1987, 60(12), P. 1805–1808.
27. Gusarov V.V., Suvorov S.A. Autocatalytic solid-phase reaction of chrysoberyl formation. Zhurnal Obshchei Khimii, 1988, 58(4), P. 932–934. (in Russian)
28. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russ. J. Gen. Chem., 1997, 67(12), P. 1846–1851.
29. Gusarov V.V., Ishutina Z.N., Malkov A.A., Malygin A.A. Peculiarities of the solid-phase chemical reaction in formation of mullite in the nanosize film composition. Doklady Akademii Nauk, 1997, 357(2), P. 203–205. (in Russian)
30. Smirnova Z.N., Gusarov V.V., Malkov A.A., Firsanova T.V., Malygin A.A., Suvorov S.A. High-speed synthesis of mullite. Zhurnal Obshchei Khimii, 1995, 65(2), P. 199–204. (in Russian)
31. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Generation of aluminum titanate in compositions with high-level of space and structural conjugation of components. Zhurnal Obshchei Khimii, 1994, 64(4), P. 554–557. (in Russian)
32. Gusarov V.V., Malkov A.A., Ishutina Z.N., Malygin A.A. Phase formation in a nanosize silicon oxide film on the surface of aluminum oxide. Technical Physics Letters, 1998, 24(1), P. 3–8.
33. Fedorov N.F., Samonin V.V., Kruglikova I.V. Thermal decomposition of some hydroxides in metal melts. Russ. J. Appl. Chem., 1997, 70(2), P. 323–325.
34. Kiselev E.A., Cherepanov V.A., Proskurnina N.V., Voronin V.I. Phase equilibria and crystal structures of phases in the La-Fe-Ni-O system at 1370 K in air. Inorgan. Mater, 2007, 43(2), P. 167–175.
35. Bannikov D.O., Cherepanov V.A. Thermodynamical Stability of the Nickel-Lanthanum Complex Oxides. Z. Anorg. Allg. Chem., 2002, 628, P. 2180–2182.
36. Kiselev E.A., Cherepanov V.A. P(O<sub>2</sub>)-stability of LaFe<sub>1-x</sub>Ni<sub>x</sub>O<sub>3−δ</sub> solid solutions at 1100 ◦C. J. Solid State Chem., 2010, 183(9), P. 1992–1997.
37. Lu J., Qiao L.J., Fu P.Z., Wu Y.C. Phase equilibrium of Bi<sub>2</sub>O<sub>3</sub>-Fe<sub>2</sub>O<sub>3</sub> pseudo-binary system and growth of BiFeO<sub>3</sub> single crystal. J. Cryst. Growth., 2011, 318, P. 936–941.
38. Valant M., Axelsson A.-M., Alford N. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO<sub>3</sub>. Chem. Mater., 2007, 19, P. 5431–5436.
39. Selbach S.M., Einarsrud M.-A., Grande T. On the thermodynamic stability of BiFeO<sub>3</sub>. Chem. Mater., 2009, 21, P. 169–173.
40. Almjashev O.V., Gusarov V.V. Effect of ZrO<sub>2</sub> nanocrystals on the stabilization of the amorphous state of alumina and silica in the ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>-SiO<sub>2</sub> systems. Glass Phys. Chem., 2006, 32(2), P. 162–166.
41. Al’myashev O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russ. J. Gen. Chem., 2010, 80(3), P. 385–390.
42. Al’myasheva O.V., Gusarov V.V. Nucleation in media in which nanoparticles of another phase are distributed. Doklady Physical Chemistry, 2009, 424(2), P. 43–45.
43. Boldyrev V.V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev., 2006, 75(3), P. 177–189. doi: 10.1070/RC2006v075n03ABEH001205
44. Kalinkin A.M., Balyakin K.V., Nevedomskii V.N., Kalinkina E.V. Solid-state synthesis of nanocrystalline strontium zirconate assisted by mechanical activation. Russ. J. Gen. Chem., 2016, 86(4), P. 785–791.
45. Maurya D., Thota H., Nalwa K.S., Garg A. BiFeO<sub>3</sub> ceramics synthesized by mechanical activation assisted versus conventional solid-state-reaction process: A comparative study. J. Alloys Compd., 2009, 477, P. 780–784.
46. Urakaev F.Kh. Mechanochemical synthesis of nanoparticles by a dilution method: optimization of the composition of a powder mixture. Mendeleev Communications. 2011, 21(5), P. 266–269.
47. Liu W., Wang Q., Zhang J., Xie X., Xia B. Isothermal kinetic analysis of the effects of high-energy ball milling on solid-state reaction of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>. Powder Technology, 2016, 287, P. 373–379.
48. Clarke T.J., Davies T.E., Kondrat S.A., Taylor S.H. Mechanochemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide. Applied Catalysis B: Environmental, 2015, 165, P. 222–231.
49. Maghsoudlou M.S.A., Ebadzadeh T., Sharafi Z., Arabi M., Zahabi K.R. Synthesis and sintering of nano-sized forsterite prepared by short mechanochemical activation process. J. Alloys Compd., 2016, 678, P. 290–296.
50. Pavel O.D., Zˇavoianu R., Bˆırjega R., Angelescu E., Pˆarvulescu V.I. Mechanochemical versus co-precipitated synthesized lanthanum-doped layered materials for olefinoxidation. Applied Catalysis A: General, 2017, 542, P. 10–20.
51. Livage J. Vanadium pentoxide gels. Chem. Mater., 1991, 3(4), P. 578.
52. Kumar M., Srikantha S., Ravikumar B., Alex T.C, Das S.K. Synthesis of pure and Sr-doped LaGaO<sub>3</sub>, LaFeO<sub>3</sub> and LaCoO<sub>3</sub> and Sr, Mg-doped LaGaO<sub>3</sub> for ITSOFC application using different wet chemical routes. Mater. Chem. Phys., 2009, 113, P. 803–815.
53. Agafonov A.V., Afanas’ev D.A., Borilo L.P., Kraev A.S., Gerasimova T.V. Synthesis of nanostructured iron titanates by soft chemistry methods. Russ. J. Inorg. Chem., 2016, 61(5), P. 560–566.
54. Li Y., Xu S. Hydrothermal synthesis of lanthanide (hydr)oxide micro/nanorods in presence of tetrabutylammonium hydroxide. J. Rare Earths, 2016, 34(6), P. 618–625.
55. Bugrov A.N., Rodionov I.A., Zvereva I.A., Smyslov R.Yu., Almjasheva O.V. Photocatalytic activity and luminescent properties of Y, Eu, Tb, Sm and Er-doped ZrO<sub>2</sub> nanoparticles obtained by hydrothermal method. Int. J. Nanotechnology, 2016, 13(1/2/3), P. 147–157.
56. Yu J., Tian N., Deng Y.F., Zhang H.H. Ultraviolet photodetector based on sol–gel synthesized MgZnO nanoparticle with photoconductive gain. J. Alloys Compd., 2016, 667, P. 359–362.
57. Salavati-Niasari M., Soofivand F., Sobhani-Nasab A., Shakouri-Arani M., Bagheri S. Synthesis, characterization, and morphological control of ZnTiO<sub>3</sub> nanoparticles through sol–gel processesand its photocatalyst application. Adv. Pow. Tech., 2016, 27(5), P. 2066–2075.
58. Nguyen A.T., Phan Ph.H.Nh., Mittova I.Ya., Knurova M.V., Mittova V.O. The characterization of nanosized ZnFe<sub>2</sub>O<sub>4</sub> material prepared by coprecipitation. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(3), P. 459–463.
59. Tretyakov Yu.D., Shlyakhtin O.A. Recent progress in cryochemical synthesis of oxide materials. J. Mater. Chem., 1999, 9(1), P. 19–24.
60. Tretyakov Yu.D., Oleynikov N.N., Shlyakhtin O.A. Cryochemical Technology of Advanced Materials. London: Chapman & Hall, 1997. 319 p.
61. Brylev O.A., Shlyakhtin O.A., Egorov A.V., Tretyakov Yu.D. Phase formation and electrochemical properties of cryochemically processed Li<sub>1+x</sub>V<sub>3</sub>O<sub>8</sub> materials. J. Power Sources, 2007, 164(2), P. 868–873.
62. Byrappa K., Yoshimura M. Handbook of Hydrothermal Technology. Published in the United States of America by Noyes Publications. 2001. NY.
63. Suchanek W.L., Riman R.E. Hydrothermal Synthesis of Advanced Ceramic Powders. Advances in Science and Technology, 2006, 45, P. 184–193.
64. Pyda W., Haberko K., Bucko M.M. Hydrothermal crystallization of zirconia and zironia solid solutions. J. Am. Ceram. Soc., 1991, 74(10), P. 2622–2629.
65. Somiya S., Akiba T. Hydrothermal zirconia powders: a bibliography. J. Europ. Ceram. Soc., 1999, 19, P. 81–87.
66. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by condition of hydrothermal synthesis. Russ. J. Gen. Chem., 1999, 69(8), P. 1219–1222.
67. Meskin P.E., Baranchikov A.E., Ivanov V.K., Afanas’ev D.R., Gavrilov A.I., Churagulov B.R., Oleinikov N.N. Ultrasonically activated hydrothermal synthesis of fine TiO<sub>2</sub> and ZrO<sub>2</sub> powders. Inorg. Mater., 2004, 40(10), P. 1208–1215.
68. Al’myasheva O.V., Korytkova E.N., Maslov A.V., Gusarov V.V. Preparation of nanocrystalline alumina under hydrothermal conditions. Inorg. Mater., 2005, 41(5), P. 540–547.
69. Kimel R.A., Adair J.H. Aqueous synthesis at 200 ◦C of sub-10 nanometer yttria tetragonally stabilized zirconia using a metal-ligand approach. J. Am. Ceram. Soc., 2005, 88(5), P. 1133–1138.
70. Li J., Luo S., Ding X., Wang Q., He P. Hydrothermal synthesis of LiAlO<sub>2</sub> nanostructures with high specific surface area by using anodized aluminum oxide template. Materials Letters, 2017, 196, P. 183–186.
71. Meskin P.E., Ivanov V.K., Baranchicov A.E., Churagulov B.R., Tretyakov Yu.D. Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO<sub>2</sub>, TiO<sub>2</sub>, NiFe<sub>2</sub>O<sub>4</sub> and Ni<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> powders. Ultrasonis Sonochemistry, 2006, 13, P. 47–53.
72. Zhu H., Yang D., Xi Z., Zhu L. Hydrothermal synthesis and characterization of zirconia nanocristallites. J. Am. Ceram. Soc, 2007, 90(4), P. 1334–1338.
73. Almjasheva O.V., Gusarov V.V. Hydrothermal synthesis of nanosized and amorphous alumina in the ZrO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-H<sub>2</sub>O system. Russ. J. Inorg. Chem., 2007, 52(8), P. 1194–1200.
74. Korytkova E.N., Pivovarova L.N., Semenova O.E., Drozdova I.A., Povinich V.F., Gusarov V.V. Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate. Russ. J. Inorg. Chem., 2007, 52(3), P. 338–344.
75. Kuklo L.I., Tolstoy V.P. Successive ionic layer deposition of Fe<sub>3</sub>O<sub>4</sub>@H<sub>x</sub>MoO<sub>4-n</sub>H<sub>2</sub>O composite nanolayers and their superparamagnetic properties. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 1050–1054.
76. Kuznetsova V.A., Almjasheva O.V., Gusarov V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe<sub>2</sub>O<sub>4</sub> under hydrothermal conditions. Glass Phys. Chem., 2009, 35(2), P. 205–209.
77. Anikeev V.I. Hydrothermal synthesis of metal oxide nano- and microparticles in supercritical water. Russ. J. Phys. Chem., 2011, 85(3), P. 377–382.
78. Gavrilov A.I., Kapitanova O.O., Baranov A.N., Churagulov B.R. Specifics of hydrothermal synthesis of oriented zinc oxide nanorods on metallic zinc substrates. Russ. J. Inorg. Chem., 2012, 57(9), P. 1182–1186.
79. Phuruangrat A., Thongtem S., Thongtem T. Microwave-assisted hydrothermal synthesis and characterization of CeO<sub>2</sub> nanowires for using as a photocatalytic material. Materials Letters, 2017, 196, P. 61–63.
80. Cheng W., Xu X., Wu F., Li J. Synthesis of cavity-containing iron oxide nanoparticles by hydrothermal treatment of colloidal dispersion. Materials Letters, 2016, 164, P. 210–212.
81. Popkov V.I., Almjasheva O.V. Formation mechanism of YFeO<sub>3</sub> nanoparticles under the hydrothermal condition. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5(5), P. 703–708.
82. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO<sub>2</sub> nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(6), P. 810–815.
83. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO<sub>2</sub>–H<sub>2</sub>O system. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(6), P. 1031–1049.
84. Almjasheva O.V., Garabadzhiu A.V., Kozina Yu.V., Litvinchuk L.F., Dobritsa V.P. Biological effect of zirconium dioxide-based nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(3), P. 391–396.
85. Simonenko N.P., Nikolaev V.A., Simonenko E.P., Generalova N.B., Sevastyanov V.G., Kuznetsov N.T. Preparation of nanostructured titania thin films by sol–gel technology. Russ. J. Inorg. Chem., 2016, 61(12), P. 1505–1511.
86. Chick L.A., Pederson L.R., Maupin G.D., Bates J.L., Thomas L.E., Exarhos G.J. Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett., 1990, 10(1-2), P. 6–12.
87. Aruna S.T. Solution combustion synthesis. Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 2017, P. 344–346.
88. Merzhanov A.G., Borovinskaya I.P. Self-Propagating High-Temperature Synthesis of Refractory Inorganic Compounds. Dokl. Akad. Nauk SSSR, 1972, 204, P. 429–432.
89. Rogachev A.S., Varma A., Merzhanov A.G. The mechanism of self-propagating high-temperature synthesis of nickel aluminides. Pt. 1. Formation of the product microstructure in a combustion wave. Int. J. SHS, 1993, 2(1), P. 25–38.
90. Merzhanov A.G. SHS Process: Combustion Theory and Practice. Archivum Combustionis, 1981, 1, P. 23–48.
91. Merzhanov A.G. Theory and Practice of SHS: Worldwide State of the Art and the Newest Results. Int. J. SHS, 1993, 2(2), P. 113–158.
92. Tret’yakov Yu.D. Self-organisation processes in the chemistry of materials. Russ. Chem. Reviews, 2003, 72(8), P. 651–679.
93. Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO<sub>3</sub> nanocrystals under glycine nitrate combustion formation. J. Crystal Growth, 2017, 467, P. 88–92.
94. Popkov V.I., Almjasheva O.V. Yttrium orthoferrite YFeO<sub>3</sub> nanopowders formation under glycine-nitrate combustion conditions. Russ. J. Appl. Chem., 2014, 87(2), P. 167–171.
95. Popkov V.I., Almjasheva O.V., Gusarov V.V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders. Russ. J. Appl. Chem., 2014, 87(10), P. 1417–1421.
96. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., V.V. Sokolov V.V., Gusarov V.V. Crystallization behaviour and morphological features of YFeO<sub>3</sub> nanocrystallites obtained by glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(6), P. 866–874.
97. Popkov V.I., Almjasheva O.V., Schmidt M.P., Izotova S.G., Gusarov V.V. Features of nanosized YFeO<sub>3</sub> formation under heat treatment of glycine–nitrate combustion products. Russ. J. Inorg. Chem., 2015, 60(10), P. 1193–1198.
98. Popkov V.I., Almjasheva O.V., Panchuk V.V., Semenov V.G., Gusarov V.V. The Role of pre-nucleus states in formation of nanocrystalline yttrium orthoferrite. Doklady Chemistry, 2016, 471(2), P. 356–359.
99. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO<sub>3</sub> via the Glycine-Nitrate Combustion Method. Russ. J. Gen. Chem., 2016, 86(10), P. 2256–2262.
100. Shravana Kumara K.N., Nagaswarupa H.P., Vishnu Mahesh K.R., Prashantha S.C., Mylarappa M., Siddeshwara D.M.K. Synthesis and characterization of nano ZnO and MgO powder by low temperature solution combustion method: studies concerning electrochemical and photocatalytic behavior. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(4), P. 662–666.
101. Rubalajyothi P., Nehru L.C. Photoluminescence characteristics of nanocrystalline Ba<sub>0.97</sub>Ca<sub>0.03</sub>SO<sub>4</sub>:Eu by combustion method. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(3), P. 561–564.
102. Chen Y., Yang J., Wang X., Feng F., Zhang Y., Tang Y. Synthesis YFeO<sub>3</sub> by salt-assisted solution combustion method and its photocatalytic activity. J. Ceram. Soc. Japan., 2014, 122(2), P. 146–150.
103. Wu L., Yu J.C., Zhang L., Wang X., Li S. Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem., 2004, 177(10), P. 3666–3674.
104. Komlev A.A., Vilezhaninov E.F. Glycine-nitrate combustion synthesis of nanopowders based on nonstoichiometric magnesium-aluminum spinel. Russ. J. Appl. Chem., 2013, 86(9), P. 1373–1380.
105. Komlev A.A., Gusarov V.V. Glycine-nitrate combustion synthesis of nonstoichiometric Mg-Fe spinel nanopowders. Inorg. Mater., 2014, 50(12), P. 1247–1251.
106. Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-nitrate combustion synthesis of CeFeO<sub>3</sub>-based nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89(8), P. 1228–1236.
107. Layek S., Verma H.C. Magnetic and dielectric properties of multiferroic BiFeO<sub>3</sub> nanoparticles synthesized by a novel citrate combustion method. Adv. Mat. Lett. 2012, 3(6), P. 533–538.
108. Zhuravlev V.D., Bamburov V.G., Beketov A.R., Perelyaeva L.A., Baklanova I.V., Sivtsova O.V., Vasil’ev V.G., Vladimirova E.V., Shevchenko V.G., Grigorov I.G. Solution combustion synthesis of α-Al<sub>2</sub>O<sub>3</sub> using urea. Ceram. Int., 2013, 39(2), P. 1379–1384.
109. Popkov V.I., Almjasheva O.V., Semenova A.S., Kellerman D.G., Nevedomskiy V.N., Gusarov V.V. Magnetic properties of YFeO<sub>3</sub> nanocrystals obtained by different soft-chemical methods. J. Mater. Sci.: Materials in Electronics, 2017, 28(10), P. 7163–7170.
110. Yang J., Li X., Zhou J., Tang Y., Zhang Y., Li Y. Factors controlling pure-phase magnetic BiFeO<sub>3</sub> powders synthesized by solution combustion synthesis. J. Alloys Compd., 2011, 509, P. 9271–9277.
111. Farhadi S., Zaidi M. Bismuth ferrite (BiFeO<sub>3</sub>) nanopowder prepared by sucrose-assisted combustion method: A novel and reusable heterogeneous catalyst fore acetylation of amines, alcohols and phenols under solvent-free conditions. J. Molecular Catalysis A: Chemical, 2009, 299, P. 18–25.
112. Khaliullin Sh.M., Zhuravlev V.D., Russkikh O.V., Ostroushko A.A., Bamburov V.G. Thermal characteristics, gassing in solution combustion synthesis and conductivity of CaZrO<sub>3</sub>. Internat. J. Self-Propag. High-Temp. Synt., 2015, 24(2), P. 83–88.
113. Ye T., Guiwen Z., Weiping Z., Shangda X. Combustion synthesis and photoluminescence of nanocrystalline Y<sub>2</sub>O<sub>3</sub>:Eu phosphors. Mater. Res. Bull., 1997, 32(5), P. 501–506.
114. Nagaveni K., Hegde M.S., Madras G. Structure and Photocatalytic Activity of Ti<sub>1-x</sub>M<sub>x</sub>O<sub>2±δ</sub> (M = W, V, Ce, Zr, Fe, and Cu) Synthesized by Solution Combustion Method. J. Phys. Chem. B., 2004, 108(52), P. 20204–20212.
115. Mokkelbost T., Kaus I., Grande T., Einarsrud M.-A. Combustion Synthesis and Characterization of Nanocrystalline CeO<sub>2</sub>-Based Powders. Chem. Mater., 2004, 16(25), P. 5489–5494.
116. Jose R., James J., John A.M., Sundararaman D., Divakar R., Koshy J. A new combustion process for nanosized YBa<sub>2</sub>ZrO<sub>5.5</sub> powders. Nanostructured Mater., 1999, 11(5), P. 623–629.
117. Chiu T.-W., Yu B.-S., Wang Y.-R., Chen K.-T., Lin Y.-T. Synthesis of nanosized CuCrO<sub>2</sub> porous powders via a self-combustion glycine nitrate process. J. Alloys Compd., 2011, 509(6), P. 2933–2935.
118. Khaliullin Sh.M., Bamburov V.G., Russkikh O.V., Ostroushko A.A., Zhuravlev V.D. CaZrO<sub>3</sub> synthesis in combustion reactions with glycine. Dokl Chem., 2015, 461(2), P. 93–95.
119. Bansal N.P., Zhong Z. Combustion synthesis of Sm<sub>0.5</sub>Sr<sub>0.5</sub>CoO<sub>3-x</sub> and La<sub>0.6</sub>Sr0.4CoO<sub>3-x</sub> nanopowders for solid oxide fuel cell cathodes. J. Power Sources, 2006, 158(1), P. 148–153.
120. Yang X., Cheng X., Yan X., Yang J., Fu T., Qiu J. Synthesis of ZrO<sub>2</sub>/ZrW<sub>2</sub>O<sub>8</sub> composites with low thermal expansion. Compos. Sci. Technol., 2007, 67(6), P. 1167–1171.
121. Smirnova M.N., Nikiforova G.E., Kop’eva M.A., Beresnev E.N., Kondrat’eva O.N., Ketsko V.A., Geras’kin A.A. Features of Mg(Fe<sub>0.8</sub>Ga<sub>0.2</sub>)<sub>2</sub>O<sub>4</sub> synthesis by glycine-nitrate method. Russ. J. Inorg. Chem., 2015, 60(8), P. 930–933.
122. Ketsko V.A., Beresnev E.N., Komova M.G., Kop’eva M.A., Geras’kin A.A., Kuznetsov N.T. MgAl<sub>0.4</sub>Fe<sub>1.6</sub>O<sub>4</sub> powders prepared via gel combustion. Russ. J. Inorg. Chem., 2012, 57(6), P. 794–796.
123. Smirnova M.N., Goeva L.V., Simonenko N.P., Beresnev E.N., Kop’eva M.A., Ketsko V.A. Gel formation specifics in the synthesis of Mg(Fe<sub>0.8</sub> Ga<sub>0.2</sub>)<sub>2</sub>O<sub>4</sub> by the glycine–nitrate method. Russ. J. Inorg. Chem., 2016, 61(10), P. 1301–1306.
124. Beresnev E.N., Smirnova M.N., Simonenko N.P., Makaev S.V., Kop’eva M.A., Ketsko V.A., Kuznetsova O.B. Gel decomposition and formation of MgFe<sub>1.6</sub>Ga<sub>0.4</sub>O<sub>4</sub> powders. Russ. J. Inorg. Chem., 2016, 61(8), P. 1026–1030.
125. Chen X., Liang S.-J., Bi J.-H., Gao J., Wu L. Self-propagating Combustion Synthesis of Nanocrystalline Yttrium Iron Oxide Solid Solution Photocatalysts. Chinese J. Inorg.Chem., 2009, 25(11), P. 1922–1927.
126. Ostroushko A.A., Russkikh O.V., Chezganov D.S. Formation and morphology of nickel foam–complex oxide coatings with the perovskite structure. J. of Surf. Invest. X-ray, Synch. and Neut. Tech, 2015, 9(6), P. 1237–1242.
127. Ostroushko A.A., Mogil’nikov Yu.V., Ostroushko I.P. Synthesis of Molybdenum- and vanadium-Containing Mixed Oxides in Polymer-Salt Systems. Inorg. Mat., 2000, 36(12), P. 1256–1263.
128. Ingle J.T., Sonekar R.P., Omanwar S.K., Wang Y., Zhao L. Solution combustion synthesis and optimization of phosphors for plasma display panels. Optical Materials, 2014, 36(8), P. 1299–1304.
129. Abasht B., Mirkazemi S. M., Beitollahi A. Solution combustion synthesis of Ca hexaferrite using glycine fuel. J. Alloys Compd., 2017, 708, P. 337–343.
130. Russkikh O.V., Ivanov D.V., Isupova L.A., Chezganov D.S., Ostroushko A.A. Synthesis, Morphology, and Activity of La<sub>1-x</sub>Ag<sub>x</sub>MnO<sub>3±y</sub> Catalysts. Kin. and Cat., 2016, 57(5), P. 712–721.
131. Wang X., Qin M., Fang F., Jia B., Wu H., Qu X., Volinsky A.A. Effect of glycine on one-step solution combustion synthesis of magnetite nanoparticles. J. Alloys Compd., 2017, 719, P. 288–295.
132. Novikov V., Xanthopoulou G., Knysh Yu., Amosov A.P. Solution combustion synthesis of nanoscale Cu-Cr-O spinels: Mechanism, properties and catalytic activity in CO oxidation. Ceramics International, 2017.
133. Vojisavljevizh K., Wicker S., Can I., Benan A., Barsan N., Malia B. Nanocrystalline cobalt-oxide powders by solution-combustion synthesis and their application in chemical sensors. Advanced Powder Technology, 2017, 28(4), P. 1118–1128.
134. Petschnig L.L., Fuhrmann G., Schildhammer D., Tribus M., Schottenberger H., Huppertz H. Solution combustion synthesis of CeFeO<sub>3</sub> under ambient atmosphere. Ceramics International, 2016, 42(3), P. 4262–4267.
135. Nabiyouni M., Zhou H., Luchini T.J.F., Bhaduri S.B. Formation of nanostructured fluorapatite via microwave assisted solution combustion synthesis. Materials Science and Engineering: C, 2014, 37, P. 363–368.
136. Tarrag´o D.P., de Fraga Malfatti C., de Sousa V.C. Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis. Powder Technology, 2015, 269, P. 481–487.
137. Varma A., Mukasyan A.S., Deshpande K.T., Pranda P., Erri P.R. Combustion Synthesis of Nanoscale Oxide Powders: Mechanism, Characterization and Properties. MRS Proc., 2003, 800, P. AA4.1–AA4.12.
138. Mukasyan A.S., Epstein P., Dinka P. Solution combustion synthesis of nanomaterials. Proc. Combust. Inst., 2007, 31(2), P. 1789–1795.
139. Aruna S.T., Mukasyan A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci., 2008, 12(3-4), P. 44–50.
140. Patil K.C., Hegde M.S., Rattan T., Aruna S.T. Chemistry of Nanocrystalline Oxide Materials – Combustion Synthesis, Properties and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd., 2008, 364 pp.
141. Chen X., Liang S.-J., Bi J.-H., Gao J., Wu L. Self-propagating Combustion Synthesis of Nanocrystalline Yttrium Iron Oxide Solid Solution Photocatalysts. Chinese J. Inorg.Chem., 2009, 25(11), P. 1922–1927.
142. Rogachev A.S., Mukasyan A.S. Combustion of heterogeneous nanostructural systems. Combust. Explos. Shock Waves, 2010, 46(3), P. 243–266.
143. Sutka A., Mezinskis G. Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci., 2012, 6(2), P. 128–141.
144. Gonzalez-Cortes S.L., Imbert F.E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen., 2013, 452, P. 117–131.
145. Rogachev A.S., Mukasyan A.S. Combustion for Material Synthesis. Boca Raton: CRC Press. 2014. 424 pp.
146. Li F.-T., Ran J., Jaroniec M., Qiao S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7(42), P. 17590–17610.
147. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev., 2016, 116(23), P. 14493–14586.
148. Khaliullin S.M., Zhuravlev V.D., Bamburov V.G. Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects. Int. J. SHS., 2016, 25(3), P. 139–148.
149. Ostroushko A.A., Shuravljova L.I., Portnova S.M., Krasilov Yu.I. Formation of grains in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> powders. Zhurn. Neorg. Khim., 1991, 36(1), P. 3–5. (in Russian)
150. Ostroushko A.A., Portnova S.M., Krasilov Yu.I., Ostroushko I.P. The processes involved in the synthesis of oxide compounds from polymer-containing salt solutions. Zhurn. Neorg. Khim., 1991, 36(4), P. 465–468.
151. Ostroushko A.A., Shuravljova L.I., Portnova S.M., Krasilov Yu.I. The use of formats to obtain HTSC films. Zhurn. Neorg. Khim., 1991, 36(5), P. 623–625.
152. Ostroushko A.A., Shuravljova L.I. Osipov V.V. Some special properties of La<sub>1-x</sub>Sr<sub>x</sub>CoO<sub>3±y</sub> films fabricated with the spray-pyrolysis method. Mat. Sci. and Eng., 1992, 149(2), P. L.17–L.19.
153. Ostroushko A.A., Mironova N.V., Ostroushko I.P., Petrov A.N. Crystallization of saline components in polymer films during YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> synthesis. Zhurn. Neorg. Khim., 1992, 37(12), P. 2627–2631. (in Russian)
154. Ostroushko A.A., Kwasnitza K., Widmer Ch, Aksionova V.I., Petrov A.N. Interaction of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> Coating with Metallic Substrates. Zhurn. Neorg. Khim., 1993, 38(3), P. 436–438. (in Russian)
155. Udilov A.E., Ostroushko A.A., Kudrevatyh N.V., Andreev S.V., Veselkina V.N. Preparing of the fine powdered Sr<sub>1-x</sub>La<sub>x</sub>Fe<sub>12-x</sub>Co<sub>x</sub>O<sub>19</sub> (x = 0; 0.2) by pyrolysis of polymeric-salt compositions. Abstracts of XIV International Conference on Permanent Magnets, Suzdal, 22-26 September 2003, P. 97.
156. Ostroushko A.A., Shuravjova L.I., Kononchuk O.F., Petrov A.N. Fabrication of films La<sub>1-x</sub>SrCoO<sub>3</sub> from salt solutions through pyrolysis method. Zhurn. Neorg. Khim., 1991, 36(1), P. 6–8. (in Russian)
157. Ostroushko A.A., Zhuravleva L.I., Mogil’nikov Yu.V., Pirogov A.N. Catalytic Activity of Mixed-oxide Coating Based on Perovskite Lanthanum Strontium Cobaltate. Russ. J. of Inorg. Chem., 1997, 42(6), P. 836–840.
158. Ostroushko A.A., Shubert E., Zhuravleva L.I., Isupova L.A., Alikina G.M., Bogdanov S.G., Valiev E.Z., Pirogov A.N., Teplykh A.E., Mogil’nikov Yu.V., Udilov A.E., Ostroushko I.P. Synthesis and Physicochemical and catalytic Properties of Perovskites ABO<sub>3±y</sub> (A = La, Sr, Ag; B = Mn, Co, Fe, Cu, Ti, Mo, V). Russ. J. Appl. Chem., 2000, 73(8), P. 1383–1392.
159. Bogdanov S.G., Valiev E.Z., Pirogov A.N., Teplykh A.E., Ostroushko A.A, Udilov A.E. Magnetic and Fractal Properties of Nanocrystalline LaMnO<sub>3</sub>. The Phys. of Met. and Metallog., 2001, 91(1), P. S229–S233.
160. Ostroushko A.A, Schubert E., Makarov A.M., Minaev V.I., Udilov A.E., Elokhina L.V., Aksionova V.I. Catalytic Activity of Complex-Oxide Perovskit Containing Compositions in Reactions of CO and Organic Compounds Oxidation. Russ. J. Appl. Chem., 2003, 76(8), P. 1292–1297.
161. Teplykh A.E., Bogdanov S.G., Valiev E.Z., Pirogov A.N., Dorofeev Yu.A., Kazantsev V.A., Kar’kin A.E., Ostroushko A.A., Udilov A.E. Size Effect in Nanocrystalline Manganites La<sub>1-x</sub>A<sub>x</sub>MnO<sub>3</sub> (A = Ag, Sr). Phys. Solid State, 2003, 45(12), P. 2328–2333.
162. Ostroushko A.A., Russkikh O.V., Prosvetova M.V., Petrova S.A., Zakharov R.G. Phase Composition and Thermal Properties of Ce<sub>1-x</sub> Ln<sub>x</sub>O<sub>2-d</sub> (Ln = Sm, Pr) Solid Solutions. Inorg. Mat., 2010, 46(9), P. 959–964.
163. Ostroushko A., Kwasnitza K., Widmer Ch. Crysallization of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub> on films with single crystal and powder-metallic substrats made from salt-polymer solutions. Final book of abstracts. Intern. Conf. on Advanced Materials (ICAM-91). Strasbourg. France. 1991. A1-XII/P.58.
164. Ostroushko A.A., Russkih O.V., Pivchenko S.V. Study of properties of catalysts for the oxidation of carbon black prepared by “ceramic” synthesis and by pyrolysis of polymeric salt compositions. Russ. J. Appl. Chem., 2010, 83(6), P. 1102–1105.
165. Ostroushko A.A. Polymer-salt composites based on nonionic water-soluble polymers and preparation of oxide materials from them. Mendeleev Chem. J., 1998, 42(1–2), P. 153–168.
166. Gusarov V.V., Suvorov S.A. Transformations of nonautonomous phases and densification of polycrystalline systems. J. Appl. Chem. USSR, 1992, 65(7), P. 1227–1235.
167. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Thermally activated transformations of 2D nonautonomous phases and contraction of polycrystalline oxyde materials. Inorg. Mater., 1995, 31(3), P. 320–323.
168. Mazurin O.V., Gusarov V.V. The future of information technologies in materials science. Glass Phys. Chem., 2002, 28(2), P. 50–58.
169. Anziferov V.N., Ostroushko A.A., Makarov A.M. Synthesis, properties and applications of catalysts based on modified complex oxide compositions of highly porous cellular materials. (Sintez, svoistva i primenenie katalizatorov na osnove modifizirovannikh slognooksinimi komposiziyami visokoporistykh yacheistikh materialov). Perm: Izd-vo Perm. gos. teh. un-ta, 2008, 204 pp. (in Russian).
170. Ostroushko A.A., Vilkova N.V. Phase relations in ammonium heptamolybdate-poly(vinyl alcohol)-water mixtures. Russ. J. Inorg. Chem., 2001, 46(8), P. 1240–1243.
171. Ostroushko A.A., Reshetnikova N.V. Phase relations and physicochemical properties of the ammonium vanadate – poly(vinyl alcohol) – water system. Russ. J. Inorg. Chem., 2002, 47(11), P. 1745–1749.
172. Ostroushko A.A., Minyaev V.I. Phase relations in the lanthanum nitrate – poly(vinyl alcohol) – water system. Russ. J. Inorg. Chem., 2003, 48(11), P. 1728–1730.
173. Ostroushko A.A., Sennikov M.Y. Ammonium heptamolybdate – poly(vinylpyrrolidone) – water system. Russ. J. Inorg. Chem., 2003, 48(4), P. 572–577.
174. Ostroushko A.A., Mikhalev D.S. Phase relations and physicochemical properties of the ammonium paratungstate – polyvinyl alcohol – water system. Russ. J. Inorg. Chem., 2003, 48(3), P. 431–434.
175. Ostroushko A.A., Sennikov M.Y., Glazyrina Y.A. Phase transitions in the ammonium heptamolybdate – poly(vinyl alcohol) – water system. Russ. J. Inorg. Chem., 2005, 50(2), P. 280–285.
176. Ostroushko A.A., Sennikov M.Yu., Glazyrina Yu.A. Phase state and physicochemical properties of systems containing ammonium tungstate or ammonium vanadate, polyvinylpyrrolidone, and water. Russ. J. Inorg. Chem., 2007, 52(2), P. 254–257.
177. Ostroushko A.A., Sennikov M.Yu. Phase relations in the lanthanum nitrate (copper nitrate) – poly(vinylpyrrolidone) – water systems. Russ. J. Inorg. Chem., 2007, 52(10), P. 1634–1637.
178. Ostroushko A.A., Slinkina M.V., Volosentseva L.I., Ostroushko I.P, Mironova N.V., Pimenov D.A. Study of cation migration in polymer saline compositions based on polyvinyl-alcohol. Zhurn. Fizich. Khim., 1993, 67(11), P. 2267–2270. (in Russian)
179. Ostroushko A.A., Zubarev A.Yu., Grzhegorzhevskii K.V. Evolution of Ammonium Metavanadate Crystals in Polyvinyl Alcohol Films. Cryst. Reports, 2016, 61(2), P. 320–326.
180. Safronov A.P., Zyryanova A.N., Gabdrafikova Y.M., Ostroushko A.A. Enthalpy of interaction in poly(vinyl alcohol) – ammonium heptamolybdate composition: Effect of complex formation and structural changes. Polym. Scien. Ser. A., 2003, 45(10), P. 1052–1058.
181. Safronov A.P., Gabdrafikova Y.M., Ukhalina O.L., Ostroushko A.A. Enthalpy of formation of poly(vinyl alcohol), poly(ethylene glycol), and polyvinylpyrrolidone complexes with copper and cadmium ions in aqueous solutions. Polym. Scien. Ser. A., 2004, 46(5), P. 541–547.
182. Ostroushko A.A., Zubarev A.Y., Bublik I.V., Sennikov M.Y., Iskakova L.Y., Safronov A.P. Modeling and calculation of the association processes between oxygen-containing polyanions and nonionic polymers. Russ. J. Inorg. Chem., 2004, 49(7), P. 1028–1033.
183. Lileev A.S., Lyashchenko A.K., Ostroushko A.A., and Sennikov M.Yu. Dielectric Properties of Aqueous Solutions of the Ammonium Heptamolybdate – Poly(vinyl Alcohol) – Water System. Russ. J. Inorg. Chem., 2006, 51(4), P. 656–661.
184. Ostroushko A.A., Adamova L.V., Eremina E.V. Thermodynamic Characteristics of the Interaction between Methanol and Keplerate-Type Poly(vinyl alcohol) – Polyoxomolybdate Composites. Russ. J. Phys. Chem. A, 2017, 91(8), P. 1535–1538. DOI: 10.1134/S0036024417080258
185. Kuznetsova A.E., Gradova N.B. Scientific basis of environmental biotechnology. Moscow, Mir, 2006, 504 pp. (in Russian)
186. Pomogailo A.D. Polymeric immobilized metal-complex catalysts. Moscow, Nauka, 1988, 303 pp. (in Russian)
187. Ostroushko A.A., Vilkova N.V., Mogil’nikov U.V. Structure and properties of molybdate and tungstate complexes of polyvinyl alcohol. Russ. J. Gen. Chem., 2002, 72(1), P. 1–8.
188. Zubarev A.Yu., Ostroushko A.A., Bublik I.V., Sennikov M.Yu. Simulation of the rheological properties of liquid media containing solid anisometric particles. Coll. J., 2007, 69(6), P. 726–734. doi: 10.1134/S1061933X07060087
189. Ostroushko A.A., Mogil’nikov Y.V., Popov K.A. Polymer-salt compositions containing anionic d-metal species. Zhurn. Neorg. Khim., 1998, 43(6), P. 840–845.
190. Men’shikov S.Yu., Sennikov M.Yu., Romanova Yu.V., Sycheva N.S., Ostroushko A.A. Homogeneous and polymer-supported catalysts in the oxidation of α-pinene with oxygen. Russ. J. Org. Chem., 2004, 40(6), P. 790–794.
191. Men’shikov S.Yu., Mishina Yu.V., Mikushina Yu.V., Ostroushko A.A. A comparative study of aerobic oxidation of turpentine. Russ. J. Appl. Chem., 2008, 81(1), P. 52–54.
192. Ostroushko A.A., Sennikov M.Yu., Sycheva N.S. Features of photochemical reactions in polymer-salt compositions containing ammonium heptamolybdate and poly(vinyl alcohol). Russ. J. Inorg. Chem., 2005, 50(7), P. 1050–1054.
193. Ostroushko A.A., Sennikov M.Yu. The Kinetics of Photochemical Processes in Polymer–Salt Systems. Russ. J. Phys. Chem. A, 2009, 83(1), P. 111–115.
194. Ostroushko A.A., Sennikov M.Yu., Gerasimova E.L. Electrochemical and electrophysical parameters of polymer-salt compositions based on poly(vinyl alcohol) and ammonium heptamolybdate. Russ. J. Inorg. Chem., 2005, 50(3), P. 428–432.
195. Ostroushko A.A., Mogil’Nikov Yu.V., Popov K.A. Thermal destruction of polymer-salt compositions containing d-metals in the form of oxygen-bearing anions. Inorg. Mat., 2000, 36(6), P. 603–611.
196. Ostroushko A.A., Mogil’nikov Yu.V., Vilkova N.V., Popov K.A. Combined analysis of parameters and thermal behavior of polymer-salt formulations containing anionic d-metal species. Russ. J. Appl. Chem., 2000, 73(10), P. 1684–1690.
197. Valiev E., Bogdanov S., Pirogov A., Teplykh A., Ostroushko A., Mogilnikov Yu. The formation processes of oxide phases from polymer-salt complexes of ammonium molybdate and tungstate. Phys. B: Cond. Mat., 2000, 276, P. 854–855.
198. Bogdanov S.G., Ostroushko A.A., Valiev E.Z., Pirogov A.N., Teplykh A.E. Effect of acidity of polymer-salt compositions on the formation mechanism of the tungsten and molybdenum oxide particles. Poverkh. Rentgen. Sinkhr. i Nejtron. Issledov., 2004, 2, P. 21–33.
199. Ostroushko A.A., Mikhalev D.S., Reshetnikova N.V. Stability of polymeric-salt gels used to synthesize complex-oxide materials. Rus. J. of Appl. Chem., 2002, 75(8), P. 1219–1222.
200. Ostroushko A.A., Mogil’Nikov Y.V., Popov K.A., Vilkova N.V., Zhuravleva L.I., Ostroushko I.P. Interactions between M<sup>2+</sup> and M<sup>3+</sup> cations and d-metal complex anions in polymer-containing solutions. Russ. J. Inorg. Chem., 1999, 44(8), P. 1328–1334.
201. Ostroushko A.A., Makarov A.M., Minyaev V.I. Oxidation of carbon in the presence of catalysts based on cesium lanthanum vanadate. Russ. J. Appl. Chem., 2004, 77(7), P. 1121–1129.
202. Ostroushko A.A. Catalytic activity of metal ions in redox processes in polymer-salt systems during synthesis of mixed oxides. Inorg. Mat., 2004, 40(3), P. 259–263.
203. Kingsley J.J., Patil K.C. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett., 1988, 6(11/12), P. 427–432.
204. Ianos R., Barvinschi P. Solution combustion synthesis of calcium zirconate, CaZrO<sub>3</sub>, powders. J. Solid. State. Chem., 2010, 183, P. 491–496.
205. Prasanth C.S., Kumar H.P, Pazhani R., Solomon S., Thomas J.K. Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO<sub>3</sub> ceramics. J. Alloys Compd., 2008, 464, P. 306–309.
206. Deganello F., Liotta L.F., Marci G., Fabbri E., Traversa E. Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mat. for Renew. and Sust. En., 2013, 2(1), P. 2–8.
207. Deganello F., Marci G., Deganello G. Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J. Europ. Ceram. Soc, 2009, 29(3), P. 439–450.
208. Boobalan K., Varun A., Vijayaraghavan R., Chidambaram K., Kamachi Mudalic U. Facile, scalable synthesis of nanocrystalline calcium zirconate by the solution combustion method. Ceram. Int., 2014, 40(4), P. 5781–5786.
209. Ostroushko A.A., Sennikov M.Yu. Thermochemical charge generation in polymer-salt films. Rus. J. of Inorg. Chem., 2005, 50(6), P. 933–936.
210. Ostroushko A.A., Sennikov M.Yu. Thermochemical charge generation in polymer-salt films as a function of temperature. Rus. J. of Inorg. Chem., 2008, 53(8), P. 1172–1175.
211. Lusheikin G.A. Polymer electrets. Moscow, Khimiya, 1976, 224 pp. (in Russian)
212. Ostroushko A.A., Russkikh O.V., Kormil’tzev I.I., Kolosov V.Y., Tsvetkov D.S., Vylkov A.I. Study of nanostructured catalysts on the basis of complex oxides deposited on a carrier. J. Surf. Invest., 2011, 5(4), P. 677–682.
213. Ostroushko A.A., Russkikh O.V., Filonova E.A., Melnikova A.A. A comprehensive analysis of processes of complex oxide materials synthesis, the influence of charge generating process on synthesis results. XX Mendeleev Congress on general and applied chemistry. Five-volumes book. Vol. 2a : abstracts. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, P. 92.
214. Ivanov B.V., Lipilin A.S., Spirin A.V., Rempel Al.A., Paranin S.N., Khrustov B.R., Shkerin S.N., Valentsev A.V., Zhuravlev V.D. The formation of multilayer structures of solid oxide fuel cells. Int. Scien. J. for Altern. Energy. and Ecol., 2007, 2(46), P. 75–88. (in Russian) .
215. Almjasheva O.V., Fedorov B.A., Smirnov A.V., Gusarov V.V. Size, morphology and structure of the particles of zirconia nanopowder obtained under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2010, 1(1), P. 26–37. (in Russian)
216. Vasilevskaya A., Almjasheva O.V., Gusarov V.V. Peculiarities of structural transformations in zirconia nanocrystals. J. Nanopart. Res., 2016, 18(188), P. 1–11.
217. Ostroushko A.A., Udilov A.E. Some features of processes of formation of complex oxide products by pyrolysis of polymer-salt compositions. Izvestiya VUZov. Ser. Khimiya i Khim. Tehn., 2007, 50(10), P. 118–122. (in Russian)
Review
For citations:
Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(4):476-502. https://doi.org/10.17586/2220-8054-2017-8-4-476-502