The influence of substrate material on the resistance of composite films based on reduced graphene oxide and polystyrene
Abstract
Current and surface topographies of composite based on polystyrene with reduced graphene oxide were investigated using atomic force microscopy. Different substrates such as gold, silicon and graphite were used for this purpose. The strong influence of the substrate’s nature on the current distribution map I(x; y) and the currentvoltage characteristics was observed. This effect can be related to different adhesion of composite on the investigated substrates.
About the Authors
M. N. NikolaevaRussian Federation
Bolshoy pr. 31, 199004 St. Petersburg
E. V. Gushchina
Russian Federation
Politekhnicheskaya ul. 26, 194021 St. Petersburg
M. S. Dunaevskii
Russian Federation
Politekhnicheskaya ul. 26, 194021 St. Petersburg
A. T. Dideikin
Russian Federation
Politekhnicheskaya ul. 26, 194021 St. Petersburg
A. N. Bugrov
Russian Federation
Bolshoy pr. 31, 199004 St. Petersburg
ul. Professora Popova 5, 197376 St. Petersburg
T. D. Anan’eva
Russian Federation
Bolshoy pr. 31, 199004 St. Petersburg
References
1. Rani A., Nam S., et.al. Electrical conductivity of Chemically reduced graphene powders under compression. Carbon Lett., 2010, 11(2), P. 90–95.
2. Neustroev E.P., Nogovitsyna M.V., Solovyova Yu.S., et al. Study of electrical conductivity of thermally reduced graphene oxide. RENSIT, 2015, 7(2), P. 162–167.
3. Chen Y., Fu K., Zhu S., et al. Reduced graphene oxide films with ultrahigh conductivity as Liion battery current collectors. Nano Lett., 2016, 16(6), P. 3616–3623.
4. Jungo S.T., Oh S.H., Kim H.B., et. al. The optical and electrical properties of graphene oxide with watersoluble conjugated polymer composites by radiation. J. Nanosci. Nanotechnol., 2013, 13(11), P. 7358–7364.
5. Nirmala R., Navamathavan R., Kim H.Y., Park S.J. Electrical properties of conductive nylon66/graphene oxide composite nanofibers. J. Nanosci. Nanotechnol., 2015, 15(8), P. 5718–22.
6. Chamingkwan P., Matsushita K., Taniike T., Terano M. Enhancement in mechanical and electrical properties of polypropylene using graphene oxide grafted with endfunctionalized propylene. Materials, 2016, 9, P. 240–253.
7. Syurik Ju., Alyabyeva N., Alekseev A., Ageev O.A. AFMbased model of percolation in graphenebased polymer nanocomposites. Composite Science and Technology, 2014, 95, P. 38–43.
8. Song M. Graphene functionalization and its application to polymer composite materials. Nanomat. and en., 2013, 2, P. 97–111.
9. Mikoushkin V.M., Shnitov V.V., Nikonov S.Yu. et al. Controlling graphite oxide bandgap width by reduction in hydrogen. Tech. Phys. Lett., 2011, 37(10), P. 942–945.
10. Aleksenskii A.E., Brunkov P.N., Dideikin A.T. et al. Singlelayer graphene oxide films on a silicon surface. Tech. Phys., 2013, 58(11), P. 1614–1618.
11. Nikolaeva M.N., Anan’eva T.D., Bugrov A.N. et.al. Correlation between structure and resistance of composites based on polystyrene and multilayered grapheme oxide. Nanosystems: physics, chemistry, mathematics, 2017, 8(2), P. 266–271.
12. Yevlampieva N., Bugrov A., Anan’eva T., et al. Soluble poly (methyl methacrylate) composites containing covalently associated zirconium dioxide nanocrystals. Am. J. Nano Res. and Appl., 2014, 2(2), P. 1–8.
13. Khairullin A.R., Nikolaeva M.N., Bugrov A.N. Resistance of the composite films based on polystyrene and graphene oxide. Nanosystems: physics, chemistry, mathematics, 2016, 7(6), P. 1055–1058.
14. Nikolaeva M.N., Bugrov A.N., et al. Conductive properties of the composite films of graphene oxide based on polystyrene in a metalpolymermetal structure. Russ. J. Appl. Chem., 2014, 87(8), P. 1151–1155.
15. Ionov A.N. Josephson currentvoltage characteristic of a composite based on polystyrene and graphene oxide. Tech. Phys. Lett., 2015, 41(7), P. 651–653.
16. Ionov A.N. JosephsonLike Behaviour of the CurrentVoltage Characteristics of Multigraphene Flakes Embedded in Polystyrene. J. Low Temp. Phys., 2016, 185(56), P. 515–521.
17. Duke C.B., Fabish T.J. Chargeinduced relaxation in polymers. Phys Rev Lett., 1976, 37, P. 1075–1078.
18. Ionov A.N., Nikolaeva M.N., Rentzsch R. Local distribution of highconductivity regions in polyamide thin films. JETP Letters, 2007, 85(12), P. 636–638.
19. Hummers W., Offeman R. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), P. 1339–1339.
20. Nikolaeva M., Boiko Y., Martynenkov A. Supramolecular structure and conductive properties of dielectric polymers in metal/polymer/metal systems. Int. J. Polym. Mater., 2013, 62(13), P. 706–710.
21. Ionov A.N., Nikolaeva M.N., Rentzsch R. Local distribution of highconductivity regions in polyamidine thin films. JETP Letters, 2007, 85(12), P. 636–638.
22. Ionov A.N., Dunaevskii M.S., Nikolaeva M.N., et al. The dependence of polymer conductivity on the work function of metallic electrodes. Ann. Phys., 2009, 18(12), P. 959–962.
23. Volovik G.E., Pudalov V.M. Graphite on graphite. JETP Letters, 2016, 104(12), P. 880–882.
Review
For citations:
Nikolaeva M.N., Gushchina E.V., Dunaevskii M.S., Dideikin A.T., Bugrov A.N., Anan’eva T.D. The influence of substrate material on the resistance of composite films based on reduced graphene oxide and polystyrene. Nanosystems: Physics, Chemistry, Mathematics. 2017;8(5):665-669.